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Foreword

W elcome to AI Techniques for Game Programming. I think you’re going to find
that it just might be one of the most useful books on game programming

that you’ve ever picked up.

Mat first came to my attention back in 2000 or so when he began posting in the
GameDev (www.gamedev.net) forums on various aspects of game AI, answering
questions of all kinds. He quickly garnered attention and praise from his fellow
posters, particularly when he posted two tutorials he’d done on neural networks
and genetic algorithms for public consumption. Mat saw a need for AI technologies
such as these to be more accessible to game developers in hopes that they might
incorporate them into their games, and his tutorials and patient answering of
questions in the GameDev forums were obviously a way to try to make that happen.
It is with some pride that I find myself now writing a foreword for a book on the
subject; may it be the first of many.

Content of This Book
This book is fundamentally about making better games. It focuses on doing this by
making the computer opponents smarter, more capable, and more human. This is
an area of knowledge that has only been getting attention in any meaningful sense
for the past decade or so.

As this book goes to press, developers can look around and find the game indus-
try exploding with activity, reaching out to new audiences, and evolving like never
before. As new consoles and PC platforms flood the market, developers find
themselves faced with an abundance of riches in terms of memory, CPU speeds,
connectivity options, and video resolutions. These new capabilities provide the
game developer with endless possibilities—and endless decisions for trade-offs
and focus. Should the new game step up video resolution another notch, or
should we focus on making the collisions more realistic? What about speed—can
we do what we want to do with the standard machines in a year and a half when
we’re ready to hit the market? How can we make our product different from our
competitor’s down the street?
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viii Foreword

Great game AI is one obvious way to make your game stand out from the crowd,
and the flood of books and articles on the subject bears this out. Good quality game
AI is no longer something to be done as long as it doesn’t hurt the framerate—it’s
now a vital part of the design process and one which can make or break sales, just
like graphics or sound. Developers are doing everything they can to investigate new
AI technologies that they can assimilate to help build better, smarter game AIs.
They want to explore new ideas that might take AIs to the next generation, an era
in which games don’t just provide an interesting opponent but one in which they
can talk to the player, interact with legions of online adventurers, and learn from
game to game to be a more cunning and twisted opponent the next time around.

Of course, these new AIs have to help make the game sell better, too. That’s always
the bottom line—if a game doesn’t sell, it doesn’t really matter how good its AI is.

Making Smarter Games
This book focuses on exploring the relatively (to the game industry, anyway) “ex-
otic” technologies of genetic algorithms and neural networks and how the developer
might use them in his games. This has been a notoriously tough area to get develop-
ers interested in for a number of reasons. Most developers feel that their current
techniques are just fine and are easy to debug. The standard finite state machine
(FSM) and fuzzy state machine (FuSM) have done a great job of providing robust,
easy-to-debug AIs that have led to hit games from Age of Empires to Quake. They work,
and with enough code time, they can be built to cover almost any situation.

They’re also sadly predictable in so many ways, and that’s where developers are
beginning to run into the Law of Diminishing Returns. Building an FSM to
handle the innumerable possibilities inherent in some of the new games can be
mind-boggling, the number of choices an AI must evaluate is overwhelming. To
the human player, there might be two or three potential decisions which are
“obviously” better—but what if the guy who coded the AI the Saturday night
before the game’s final version was sent to the publisher didn’t think about those?
The player sees the AI faced with a terrific decision upon which the entire fate of
the game hangs—and it chooses incorrectly. Or worse than that, it chooses stu-
pidly. A few instances of that and it’s pop! The CD is out of the drive and the
player has moved on to something else.

Suppose instead that the player faced a computer opponent that didn’t have a blind
spot, that a game didn’t have a special combination of features that would render

Team LRN



ixForeword

the AI brain-dead once the player discovered it. Suppose instead that the player
faced an AI that might actually adapt to the player’s style over time, one that played
better and smarter as the player learned more about the game.

This kind of adaptation, or learning, is something of a Holy Grail for developers and
players alike, and players clamber for it whenever they’re asked what they’d most
like to see next. Gamers want to be challenged by an AI that actually adapts to their
style of play, AIs that might anticipate what the player is most likely to do and then
do something about it. In other words, an AI that plays more like another human.

To the Future
That’s where some of the more interesting AI technologies, such as the ones cov-
ered in this book, come in. These technologies bring a more biological focus to the
normally dry, logic-like realm of AI, giving the developer tools through which she
might construct computer opponents that think like the players do. Using these
techniques, a developer might build an AI that is smart enough to try a few differ-
ent things to see what works best rather than simply selecting options from a menu
of whatever the programmer thought to include. It might analyze the relative
strengths and positions of its opponent’s forces, figure out that an invasion is near,
and reposition forces to intercept it.

The benefits that are possible don’t just affect the player’s ability to have a good
time. Properly built, an AI that learns can have real impacts on development and
test time on the part of the programmer, because he no longer has to build and test
dozens or hundreds of fragile, special-case AI logic. If the AI can instead be given a
few basic guidelines and then learn how to play the game by watching expert hu-
man players, it will not only be more robust, it will simply play a better game. It’s
like the difference between reading about basketball and actually playing it.

Does that mean that Mat has done all the hard work here, and all you have to do is
copy and paste his code into your latest project to build an AI that plays just like any
human player? No, of course not. What is presented here is a guide, a framework, a
baseline for those of you who don’t know anything about these more exotic AI
technologies and are looking for a new angle for your next project. Maybe you
haven’t had the time to research these possibilities on your own or perhaps you
were just turned off by the more “academic” explanations found in other texts or
around the Web.
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x Foreword

The chapters that follow explore these technologies in an easy-going, friendly way.
The approach is by a game developer for a game developer, and Mat maintains that
focus throughout.

AIs that can learn and adapt are an emerging technology that clearly point the way
to better games, more satisfied gamers, and, most importantly, more sales.

Steven Woodcock
ferretman@gameai.com
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xxvi Letter from the Series Editor

Letter from the
Series Editor

Being the series editor for the Premier Game Development series leaves me
little time to write books these days, so I have to find people who really have
a passion for it and who can really deliver the goods. If you have read any of
my game programming books, you know that I always include heavy cover-
age of AI—from state machines to fuzzy logic—but I have never had time to
write a complete book just on AI. Alas, we set out to find the perfect author
to write the best game AI book in the world. And now that the book is done,
I can’t believe it, but we did it! Mat has not only written the book as I would
have, but far exceeded my expectations of going that extra mile to bring you
something that is timeless and will have far-reaching impact on the gaming
community, as well as other areas of engineering, biological computation,
robotics, optimization theory, and more.

I have never seen a book that has put neural nets and genetic algorithms
together and made real demos with them that do real things. For 20 years, I
have been using this stuff, and I am amazed that no one else has realized
how easy it all is—this is not rocket science; it’s just a new way to do things. If
you look at all the academic books on AI, they are totally overkill—tons of
math, theory, and not a single real-world program that does something
other than let you type in some coefficients and then watch a couple itera-
tions of a neural net or genetic algorithm work—useless.

When I set out to do this book, I wanted someone that not only knew his
stuff inside and out, but was an awesome programmer, artist, and most of all,
a perfectionist. Mat and I worked on the table of contents for quite some
time, deciding what should be covered. Also, we absolutely both agreed that
this book had to be graphical and have real examples of every single con-
cept; moreover, we knew the book had to have tons of figures, illustrations,
and visuals to help bring the concepts down to Earth. In the end, I can say
without a doubt”this is the best book on applied AI in the world.”

I dare anyone to show me a better book that teaches the concepts better
than Mat has and brings them down to an understandable level that anyone
can learn and put to use today. I guarantee you that when you finish this
book, whether you are a programmer, an engineer, a biologist, a roboticist,

Team LRN



xxviiLetter from the Series Editor

or whatever, you will immediately put these techniques to work and shoot
yourself in the foot for not doing it sooner—this book is that amazing.

Also, this book will give you the tools you need to use AI techniques in the
real world in areas such as robotics, engineering, weapons design, you name
it. I bet about 6 months after the release of this book, there are going to be a
lot of really dangerous Quake bots out there on the Internet!!!

In conclusion, I don’t care what field of computing you are interested in, you
can’t afford not to know what’s in this book. You will be amazed and delighted
with the possibility of making “thinking machines” yourself—machines that
are alive but based in a digital world of silicon. They are no different than
us—their domain and capabilities are different, but they are still alive depend-
ing on how you define life. The time of Digital Biology is upon us—new rules of
the definition of life, what it means, and so forth are here—humans and
organic organisms based in the physical world do not have unilateral reign of
the concept of living or sentience. As Ray Kurzweil said in the Age of Spirtual
Machines, “In 20 years a standard desktop computer will outpace the computa-
tional abilities of the human brain.” Of course, this statement takes nothing
but Moore’s Law into account; it says nothing of quantum computing and
other innovations which are bound to happen. My prediction is that by 2050,
the computational abilities of a chip that can fit on the tip of a needle that
costs 1 penny will have more power than all the human brains on the planet
combined. I will probably be completely wrong; it will probably have 1,000,000
times that power, but I will be a pessimist for now.

So the bottom line is this: We are truly at the dawn of a new age where living
machines are going to happen; they are inevitable. And understanding the
techniques in this book is a first step to getting there. That is, the applica-
tion of simple rules, evolutionary algorithms, and basic techniques modeled
after our own biology can help us create these machines, or more ironically
our future ancestors.

André LaMothe
Series Editor for the Premier Game Development Series
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Introduction

Considering how many fools can calculate, it is surprising that it should be thought either
a difficult or a tedious task for any other fool to learn how to master the same tricks.

Some [calculus] tricks are quite easy. Some are enormously difficult. The fools who write the
text-books of advanced mathematics—and they are mostly clever fools—seldom take the
trouble to show you how easy the easy calculations are. On the contrary, they seem to desire
to impress you with their tremendous cleverness by going about it in the most difficult way.

Being myself a remarkably stupid fellow, I have had to unteach myself the difficulties,
and now beg to present to my fellow fools the parts that are not hard. Master these
thoroughly, and the rest will follow. What one fool can do, another can.

Silvanus P. Thompson

Introduction to Calculus Made Easy, first published in 1910

H ome computers have come a long way from the days of the Sinclair ZX80. The
speed of hardware keeps getting faster and the cost of components keeps

falling. The quality of the graphics we see in games has improved incredibly in just a
few short years. However, to date, that’s where almost all the effort developing
games has been spent—on eye-candy. We’ve seen very little improvement in the AI
of our favorite computer opponents.

Times are changing, though. Hardware has now gotten to the point where game
developers can afford to give more clock cycles to the creation of AI. Also, games
players are more sophisticated in their tastes. No longer do people want the dumb
monsters to be found in old favorites like Doom and Quake. No longer do they want
their computer-controlled game characters blindly stumbling around trying to find
paths that don’t exist, getting stuck in corners, dropping resources where they
shouldn’t, and bumping into trees. Games players want a lot more from their
games. They want to see believable, intelligent behavior from their computer-
generated opponents (and allies).

For these reasons, I firmly believe the development of AI is going to take off in a big
way in the next few years. Games like Black & White and Halo have wooed us with their
AI, and games players are screaming for more of the same. What’s more, completely
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new genres of games based around AI and A-Life have started to appear in the past
few years, like Steve Grand’s Creatures, which, much to his and everyone else’s surprise,
has sold over a million copies. And if you think that’s a lot of copies, take a look at the
sales of The Sims by Electronic Arts. To date, The Sims and the add-on packs have sold
over 13 million copies! That’s a lot of revenue, and it is a perfect indication of how
much interest there is in this type of technology. The trend can only continue.

There are many techniques for creating the illusion of intelligence, but this book
concentrates on just two of them: Genetic Algorithms and Artificial Neural Networks. Both
these technologies are talked about a lot and they are definitely a “hot” topic at the
moment, but they are also often misunderstood. Take neural networks, for example.
It’s not uncommon to see developers who believe neural nets are incredibly complex
things, which will consequently take up too much processor time and slow down their
game. Or conversely, they may be far too enthusiastic about a neural network’s capa-
bilities and as a result get frustrated when their plan to create a sentient HAL-like
being fails! I hope this book will help allay some of these misconceptions.

The passage quoted in this section from the introduction of Silvanus Thompson’s
acclaimed book, Calculus Made Easy, seemed the perfect way to start my own book
(thanks, Silvanus!), because neural networks and genetic algorithms, just like
calculus, can be very difficult topics for the novice to start out with—especially for
someone who hasn’t spent much time treading the hallowed halls of academia.
Almost all the books out there are written by academics, for academics, and are
consequently full of strange mathematical formulas and obscure terminology.
Therefore, I’ve written the sort of book I wished would have been available when I
first got interested in these subjects: a book for fools written by a fool. Believe me, if
I’d had a book like this when I first started out, it would have saved me many hours
of frustration trying to figure out what all the academics were talking about!

Over the years, I’ve read many books and papers on this subject and hardly any of
them give any real-world examples, nothing solid you can grasp hold of and go “Ah!
So that’s what I can do with it!” For example, your average book on genetic algorithms
might give you a problem like this:

Minimize the function

where
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I mean, fair enough, it’s a problem you can solve with a genetic algorithm, but it’s
practically meaningless to us mere mortals. Unless you have a good mathematical
background, this type of problem will probably seem very abstract and will most
likely make you feel immediately uncomfortable. Reading any further will then feel
like work rather than fun.

But if you are given a problem like this:

Let me introduce you to Bob. It’s not a good day for Bob because he’s hopelessly stuck in a
maze and his wife expects him home shortly to share a meal she’s spent all afternoon
preparing. Let me show you how you can save Bob’s marriage by using a genetic algo-
rithm to find the directions he must follow to find the exit.

Your brain has an anchor point—
something it can relate to. Immediately
you feel more comfortable with the
problem. Not only that, but it is an
interesting problem. You want to know
how it’s going to be solved. So you turn
the page, and you learn. And you have
fun while you’re learning.

These are the sort of problems I’ve used
to illustrate the concepts described in this
book. If I’ve done my job correctly, it will
be immediately obvious how you apply
the ideas to your own games and projects.

I’m making only one assumption about
you, the reader, and that is that you
know how to program. I don’t know
about you, but I find it frustrating when
I buy a book only to discover there are
parts of it I don’t understand, so I have to go and buy another book to explain the
stuff in the first one. To prevent any similar frustration, I’ve tried to make sure this
book explains everything shown in the code—from using the Windows GDI, matrix,
and vector mathematics to physics and 2D graphics. I know there’s another side to
this coin and there’ll be some of you who already know the graphics, physics, and
the GDI stuff, but hey, you can just skip the stuff you know and get straight on to the
exciting stuff.

NOTE
Building the Demo Programs

The demos are a cinch to compile.
First copy the source code to your
hard drive. If you use Visual Studio,
simply click on the project
workspace and take it from there. If
you use an alternative compiler,
create a new win32 project (make
sure winmm.lib is added in your
project settings), and then add the
relevant source and resource files
from the project folder before
pressing the compile button. That’s
all there is to it. No additional paths,
DirectX, or OpenGL to set up.
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In all the examples, I’ve kept the code as simple as possible. It’s written in C++, but I
want C programmers to be able to understand my code, too. So for this reason I
have not used any groovy stuff like inheritance and polymorphism. I make use of
the simpler features of the STL (Standard Template Library), but where I do intro-
duce an STL feature, there will be a sidebar explaining that feature. The whole
point of using simple code is that it does not obscure the principle I’m trying to
explain. Believe me, some of the stuff this book covers is not easy to grasp at first,
and I didn’t want to complicate matters by giving you examples in cleverly written
code. I have done my utmost to bear in mind that old management consultant’s
favorite acronym: K.I.S.S (Keep It Stupidly Simple).

So without further ado, let’s start the adventure…
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4 1. In the Beginning, There Was a Word

And Then Came Word,
and Excel, and…

Customer: “I’ve just installed Windows 3.0.”

Tech: “Yes.”

Customer: “My computer isn’t working now.”

Tech: “Yes, you said that.”

A Little Bit of History
Long ago, back in a time when Airwolf was considered exciting, and everyone
walked around with a Rubik’s Cube in their hands, a man named Bill Gates an-
nounced the coming of a new operating system developed by his company,
Microsoft. The year was 1983, and the operating system was to be called “Windows.”
He initially decided to call his baby “The Interface Manager,” but fortunately for
Bill, his marketing guru convinced him that Windows would be a better name. The
public was kept waiting for a long time, because although Gates had demonstrated a
beta version of Windows to IBM in late 1983, the final product didn’t hit the shelves
until two years later.

Windows 1.0
Windows 1.0 (shown in Figure 1.1) was awful—clunky, slow, and buggy, and most of
all, downright ugly. And on top of that, there was practically no support for it until
Aldus released PageMaker in 1987. PageMaker was the first WYSIWYG (What You
See Is What You Get) desktop publishing program for the PC. A few other programs
came along soon afterward, such as Word and Excel, but Windows 1.0 was never a
consumer favorite.
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5A Little Bit of History

Windows 2.0
By the time Windows 2.0 was released, the user interface had begun to look much
more like the GUI of a Macintosh computer. Apple, miffed at the resemblance, filed
a lawsuit against Microsoft alleging that Bill had stolen their ideas. Microsoft
claimed that an earlier agreement they had with Apple gave them the right to use
Apple features, and after four years, Microsoft won the case. Therefore, Windows
2.0 (shown in Figure 1.2) stayed on the store shelves, but it sold poorly, because
there was very little support from software developers. After all, what’s the use of an
operating system if there’s no compatible software?

Figure 1.1

Groovy!

Figure 1.2

Windows begins to
look more familiar.

Windows 3.0/3.1
Windows 3.0 (shown in Figure 1.3) was released in 1990. It boasted support for 16
colors (wow!), icons (bigger wow!), and had a much improved file manager and
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6 1. In the Beginning, There Was a Word

program manager. Although it was still bug ridden, for some reason programmers
took a liking to this new version of Windows and plenty of software was developed
for it. Microsoft addressed a lot of the problems and released Windows 3.1 in 1992;
it was much more stable and also had support for stuff like sound and video. Three
million copies were sold in the first two months. Soon afterward, Microsoft released
Windows 3.1—Windows for Workgroups, which introduced network support, and
Microsoft was well on their way to the big time.

Figure 1.3

I bet this brings
back some
memories.

Windows 95
This version of Windows was the first version you could install without having to
install MS-DOS first. It looked great, and it was a proper 32-bit multitasking
environment. I remember installing it in the company of some friends. The first
thing we did was run the same screensaver in four different Windows at the same
time. My friends and I looked at each other with wide smiles and simultaneously
said “Cooool!” A new era was born. Games even started to run fairly quickly under
Windows. This was amazing, because prior to Windows 95, games written to run
under Windows were a joke. They were slow, ugly, and plain-old boring. Everybody
knew that a proper game had to run under DOS, or it just wasn’t a game. Well,
Windows 95 changed all that. No longer did gamers have to muck about endlessly
with their config.sys and autoexec.bat files to obtain the correct amount of base
and extended memory to run a game. Now we could just install, click, and play. It
was a revelation.
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Windows 98 Onward
Successive generations of Windows have built upon the success of Windows 95.
Windows has become more stable, more user friendly, and easier to program for.
DOS is a thing of the distant past, and nowadays, all games are written to run under
the Windows environment. In its many guises—Windows 98, Windows ME, Windows
2000, and Windows XP—it is the single-most dominant operating system in use
today. This is the reason my code was written to run under Windows, and this is the
reason I’m going to start this book by teaching you the fundamentals of Windows
programming. So let’s get going!

Hello World!
Most programming books start by teaching readers how to code a simple program
that prints the words “Hello World!” on the screen. In C++, it would look something
like this:

#include <iostream>

using namespace std;

int main()

{

  cout << "Hello World!\n";

  return 0;

}

When run, this straightforward program will display an output that looks like Figure 1.4.

Figure 1.4

“Hello World” in a console.

Now I’m going to stick with tradition and show you how to get those familiar words
up on your screen and inside a window.

Hello World!

Team LRN



8 1. In the Beginning, There Was a Word

Your First Windows Program
Here we go! Strap yourself in and prepare yourself for the ride! Initially, Windows
programming may give you a few headaches, but I assure you once you’ve written a
few programs of your own, it won’t seem too bad. In fact, you may even grow to like
it. So, without further ado, here’s how you get “Hello World!” to appear on your
screen in Windows.

#include <windows.h>

int WINAPI WinMain(HINSTANCE hInstance,

                   HINSTANCE hPrevInstance,

                   LPSTR     lpCmdLine,

                   int       nCmdShow)

{

  MessageBox(NULL, "Hello World!", "MsgBox", 0);

  return 0;

}

If you type this program into your compiler and run it (or just click on the
HelloWorld1 executable from the accompanying CD-ROM), a little message box
will appear on the screen, which will wait for you to click on OK before it exits. See
Figure 1.5. If you are going to type in the code, make sure that you create a win32
project and not a console application in your compiler’s IDE. Otherwise, the code
will not compile, and you’ll be stuck at the first hurdle.

Figure 1.5

A simple “Hello World” example.

As you can see, the first difference is that the entry point to the program is not good ol’

int main()

but the strange looking beast:

int WINAPI WinMain(HINSTANCE hInstance,

                   HINSTANCE hPrevInstance,

                   LPSTR     lpCmdLine,

                   int       nCmdShow)
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Let’s go through this one step at a time.

You can basically ignore the WINAPI part. It is just a macro defined in WINDEF.H, like this:

#define WINAPI _stdcall

And that tells the compiler how to create machine code in a way that is compatible
with Windows. If you omit it, your program may still compile and run, but you
should get a warning during compilation. The bottom line is you should always
make sure your WinMain function includes WINAPI. Now on to those strange-looking
parameters…

The first parameter, hInstance, is an instance handle. This is basically an ID given to
you by Windows at run time that uniquely identifies your program. Occasionally you
will make a call to one of the many Win32 API functions, and you will be required
to pass your instance handle as a parameter. Windows uses this handle to identify
your program among any other programs which may be running at the same time.

The second parameter is also an instance handle, but nowadays this is always set to
NULL. In the past, it was used in 16-bit Windows applications for opening several
copies of the same program, but it is no longer necessary.

lpCmdLine is similar to the DOS main() function’s argc and argv[] parameters. It’s
simply a way of passing command-line parameters to your application. A LPSTR is
defined in WINNT.H as a pointer to a character string. When you run your application
from the command line, the string lpCmdLine will contain everything you typed,
except the program name. So, for example, if your program is called MyGame.exe,
and you typed in MyGame /s/d/log.txt, lpCmpLine will contain the characters, “/s/
d/log.txt”.

The final parameter, nCmdShow, tells your program how it should be initially dis-
played. There are many different parameters for this, which are summarized in
Table 1.1.

When a user creates a shortcut to your application on the desktop or in the start
menu, he can specify how the application should open. So, if the user decides he
wants the window to open maximized, nCmdShow would be set to SW_SHOWMAXIMIZED.

Okay, I’ve explained WinMain, now it’s time to take a look at the line:

MessageBox(NULL, "Hello World!", "MsgBox", 0);

This is simply a call to one of the thousands of Win32 API functions. All it does it
print a message box to the screen in a style defined by several parameters. This little

Your First Windows Program
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10 1. In the Beginning, There Was a Word

function comes in very handy; it’s a particularly good way of passing error informa-
tion to the user. If you have a function that you think is error prone, you can simply
do something, such as:

if (error)
{

  MessageBox(hwnd, "Details of the error", "Error!", 0);

}

Let’s take a look at the function prototype:

int MessageBox(HWND    hWnd,        // handle of owner window

               LPCTSTR lpText,      // address of text in message box

               LPCTSTR lpCaption,   // address of title of message box

               UINT    uType);      // style of message box

Table 1.1 nCmdShow Options

Parameter Meaning

SW_HIDE Hides the window and activates another window.

SW_MINIMIZE Minimizes the specified window and activates the top-level window
in the system’s list.

SW_RESTORE Activates and displays a window. If the window is minimized or
maximized, Windows restores it to its original size and position
(same as SW_SHOWNORMAL).

SW_SHOW Activates a window and displays it in its current size and position.

SW_SHOWMAXIMIZED Activates a window and displays it as a maximized window.

SW_SHOWMINIMIZED Activates a window and displays it as an icon.

SW_SHOWMINNOACTIVE Displays a window as an icon. The active window remains active.

SW_SHOWNA Displays a window in its current state. The active window
remains active.

SW_SHOWNOACTIVATE Displays a window in its most recent size and position. The active
window remains active.

SW_SHOWNORMAL Activates and displays a window. If the window is minimized or
maximized, Windows restores it to its original size and position
(same as SW_RESTORE).
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hWnd is the handle of the window you want your message box to be attached to.
You’ll be using handles frequently in your Windows programming, and I’ll discuss
them in detail soon. In the HelloWorld1 program, hWnd is set to NULL, which means
the message box will be attached to the desktop.

lpText is a null terminated string containing the message you want displayed.

lpCaption is a null terminated string, which is displayed as the caption to the mes-
sage box.

Finally, uType is the style the message box is to be displayed in. There are loads of
styles available, defined in groups of flags that you can combine to create even more
styles (see Table 1.2). Look in your win32 documentation for the complete listing.

Table 1.2 Message Box uType Styles

General Settings

Flag Meaning

MB_ABORTRETRYIGNORE The message box contains three push buttons: Abort, Retry,
and Ignore.

MB_OK The message box contains one push button: OK. This is
the default.

MB_OKCANCEL The message box contains two push buttons: OK and Cancel.

MB_RETRYCANCEL The message box contains two push buttons: Retry and Cancel.

MB_YESNO The message box contains two push buttons: Yes and No.

MB_YESNOCANCEL The message box contains three push buttons: Yes, No,
and Cancel.

Icon Types

Flag Meaning

MB_ICONWARNING An exclamation-point icon appears in the message box.

MB_ICONASTERISK An icon consisting of a lowercase letter i in a circle appears in
the message box.

MB_ICONQUESTION A question-mark icon appears in the message box.

MB_ICONSTOP A stop-sign icon appears in the message box.

Your First Windows Program
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To combine the flags, you use the logical OR. Therefore, to create a message box
with OK and Cancel buttons, which appears with a stop-sign icon, you would set the
uType value to MB_OKCANCEL | MB_ICONSTOP. Easy.

Like most Win32 function calls, MessageBox will give you a return value. In the
HelloWorld1 example, the return value is of no concern, and you ignore it, but
often you will want some feedback from the user. The MessageBox function returns
zero if there is not enough memory to create a message box or one of the following:

IDABORT Abort button was selected.

IDCANCEL Cancel button was selected.

IDIGNORE Ignore button was selected.

IDNO No button was selected.

IDOK OK button was selected.

IDRETRY Retry button was selected.

IDYES Yes button was selected.

That wraps up the first lesson. Okay, I’ll admit, I haven’t actually showed you how to
create a proper application window yet, but I wanted to lead you in gradually. I bet,
though, that you’ve been wondering about all those weird looking variable name
prefixes, such as lp, sz, and h. Well, Microsoft programmers all use a programming
convention called Hungarian Notation, and it’s probably a good idea to chat about
that before I delve any further into the mysteries of Win32 programming.

Hungarian Notation: What’s That About?
Hungarian Notation is the brainchild of a Microsoft employee named Dr. Charles
Simonyi. It’s named Hungarian Notation because, you guessed it, Charles is from
Hungary. Basically, it’s a naming convention that prefixes each variable name with
letters that describe that variables type, and then a short description of the variable
that commences with a capital letter. For example, if I needed an integer to keep a
record of the score in a game, I might name it iScore. Hungarian Notation was
invented out of the necessity of creating a coding standard that Microsoft program-
mers could adhere to. Imagine the mess a company could get into if all its program-
mers used a different naming convention…

Although this system seems cumbersome, and some of the names look like a lan-
guage from a far-off country, once you adopt it you’ll probably find it’s actually very
useful. I say probably because there are programmers who loathe this type of nota-
tion, and you may be one of them. The Usenet is filled with threads arguing the
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pros and cons of Hungarian Notation; it’s amazing how so many people can be
emotive about the subject. After all, in the end, it comes down to personal prefer-
ence (unless you work for Microsoft, then you have no choice). Whatever your view
though, you are going to have to learn the convention if you are going to program
in Windows. That’s the bottom line. So what do those prefixes mean? Well, Table
1.3 lists the more common ones:

Table 1.3 Hungarian Notation Prefixes

Prefix Type

sz pointer to first character of a zero terminated string

str string

i int

n number or int

ui unsigned int

c char

w WORD (unsigned short)

dw DWORD (unsigned long)

fn function pointer

d double

by byte

l long

p pointer

lp long pointer

lpstr long pointer to a string

h handle

m_ class member

g_ global type

hwnd Window handle

hdc handle to a Windows device context

Your First Windows Program
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So now when you see variables such as g_iScore, szWindowClassName, and m_dSpeed,
you’ll know exactly what they are describing. As you’ll discover when you look at my
code, I have adopted my own version of Hungarian Notation, because I find it
incredibly useful—as do thousands of other programmers. With Hungarian Nota-
tion, you can look at someone else’s code and immediately understand all the
variable types without having to refer back to their definitions. I have to add here
that I do not use Hungarian Notation for every variable. If a variable is used in a
small function, I’ll use whatever I think is appropriate, because it should be obvious
what the variable is. For example, if I’m writing a function that will take an error
string as a parameter and display a message box, I would declare it like this:

void ErrorMsg(char* error);

and not like this:

void ErrorMsg(char*  szError);

In addition, I prefix all my classes with the capital letter C and all my structs with
the capital letter S (now that’s what I call thinking!). I also use my own convention,
based on the Hungarian style, for things like 2D/3D vectors and the STL vector
class. So a typical class definition might look like this:

class CMyClass

{

private:

  int           m_iHealth;

  S2DVector     m_vPosition;

  vector<float> m_vecfWeights;

public:

  CMyClass();

};

Got it? Okay, let’s go dance with the devil…

Your First Window
Before you can create a window, the first thing you must do is create your own
window class and then register it, so that the operating system knows what type of
window you want displayed and how you want it to behave. Windows can be any size
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and they may or may not have borders, scroll bars, and menus. They may include
buttons or toolbars and they can be any color. The options are almost endless. Even
the little message box I just created was a type of predefined window. What you
most often want, however, is a window into which you can place text and draw
graphics, and this is what I’m going to show you how to create now. The code to
accompany the next few pages is in the HelloWorld2 project on the CD-ROM.

Registering Your Window
The type of window you want is defined by creating your own window class struc-
ture. To do this, you must fill in a WNDCLASSEX structure. This structure looks like this:

typedef struct _WNDCLASSEX {

    UINT    cbSize;

    UINT    style;

    WNDPROC lpfnWndProc;

    int     cbClsExtra;

    int     cbWndExtra;

    HANDLE  hInstance;

    HICON   hIcon;

    HCURSOR hCursor;

    HBRUSH  hbrBackground;

    LPCTSTR lpszMenuName;

    LPCTSTR lpszClassName;

    HICON   hIconSm;

} WNDCLASSEX;

Argh! I hear you scream—more weird
parameters! Oh yes, you’re going to be
seeing this sort of thing quite a lot from
here on in. But stay calm, and try not to
panic. Take a few deep breaths if you
need to. I assure you everything will be
okay in the long run. Let’s go through
each member in more detail.

cbSize holds the size, in bytes, of the
structure. You set this to

cbSize = sizeof(WNDCLASSEX);

NOTE
Windows used to use a structure
called WNDCLASS, but Microsoft made
some improvements and designed
the newer WNDCLASSEX structure.
You’ll see EX added to quite a few
structure names for the same
reason. You can still use the older
structures, by the way, but there’s
not much point. It’d be like entering
a 1930s sports car into a present day
Formula One race. (Well, maybe the
difference is not that extreme, but
you get my point.)

Your First Windows Program
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Always make sure you set it, or when you register your class, Windows will spit it
right back out at you.

style is the style the window will appear in. You set it by choosing several flags and
logically ORing them together—just like you can do for a message box. The most
common configuration for the style is:

style = CS_HREDRAW | CS_VREDRAW;

which tells the Windows API that you want your window redrawn whenever the user
changes the height or the width. There are quite a few style options that you’ll find
listed in the Win32 API help file.

lpfnWndProc is a function pointer to the Windows Procedure. I’ll be talking a lot more
about this shortly. That will be when things start to get really interesting.

cbClsExtra/cbWndExtra: You needn’t worry about the parameters. You will nearly
always set these to zero. They exist to allow you to create a few more bytes of storage
space for your Windows class, if you so require(which you probably won’t).

hInstance: Remember the hInstance parameter from WinMain? This is what the Win-
dows class structure is asking for. You just fill this field in using the hInstance you get
from WinMain.

hInstance = hInstance;

hIcon is a handle to the icon that you want your application to use. It is displayed
when you use Alt+Tab to task switch. You can either use one of the default Windows
icons, or you can define your own and include it as a resource. I’ll be showing you
how to do that in the next chapter. To get a handle to an icon, call LoadIcon.

This is how you would use one of the default icons:

hIcon = LoadIcon(NULL, IDI_APPLICATION);

hCursor: You guessed it—hCursor is a handle to the cursor the application will display.
Normally, you would set this to the default arrow cursor. To obtain a handle to a
cursor, you call LoadCursor like this:

hCursor = LoadCursor(NULL, IDC_ARROW);

hbrBackground is a field used to specify the background color of the client area of the
window you create. The client area is the bit of the window that you actually draw
and print to. The hbr prefix means that it’s a “handle to a brush.” A brush is some-
thing Windows uses to fill in areas with color or even with predefined patterns. You
can define your own brushes, or you can use one of the stock brushes already
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defined by the API. So, if you want your background to be white, you would set
this field to

hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);

I’ll be discussing brushes in a lot more detail in Chapter 2, “Further Adventures
with Windows Programming.”

lpszMenuName is used to set the name of the menu—if you require one. If you don’t
require pull-down menus, such as edit, save, and load, you can set this to NULL. I’ll
also be showing you how to create menus in the next chapter.

lpszClassName is the name you give to your Windows class. This can be anything you
like. Let your imagine run wild.

hIconSm is a handle to the icon that will
appear in the task bar and in the top
left-hand corner of your Windows
application. Again, you can design your
own and include it as a resource, or you
can use one of the default icons.

After you’ve created your Windows class,
you need to register it by calling
RegisterClass. You pass this function a
pointer to the WNDCLASSEX structure.
Taking the example from the
HelloWorld2 program on the CD-ROM, the whole thing looks like this:

//our window class structure

WNDCLASSEX     winclass;

// first fill in the window class structure

winclass.cbSize         = sizeof(WNDCLASSEX);

winclass.style          = CS_HREDRAW | CS_VREDRAW;

winclass.lpfnWndProc    = WindowProc;

winclass.cbClsExtra     = 0;

winclass.cbWndExtra     = 0;

winclass.hInstance      = hInstance;

winclass.hIcon          = LoadIcon(NULL, IDI_APPLICATION);

winclass.hCursor        = LoadCursor(NULL, IDC_ARROW);

winclass.hbrBackground  = (HBRUSH)GetStockObject (WHITE_BRUSH);

winclass.lpszMenuName   = NULL;

TIP
It’s worth mentioning at this point
that very few programmers actually
remember all these parameters.
What most of us tend to do is keep
a basic Windows template file we
can cut and paste from whenever we
start a new project. It makes life
much easier.

Your First Windows Program

Team LRN



18 1. In the Beginning, There Was a Word

winclass.lpszClassName  = g_szWindowClassName;

winclass.hIconSm        = LoadIcon(NULL, IDI_APPLICATION);

 //register the window class

if (!RegisterClassEx(&winclass))

{

  MessageBox(NULL, "Class Registration Failed!", "Error", 0);

  //exit the application

  return 0;

}

This creates a Windows class with a white background, no menu, the default arrow
cursor, default icon that knows to redraw the window if the user alters the size.
Notice when registering the class, I’ve made use of that nifty little MessageBox func-
tion to inform the user of any errors.

Creating the Window
Now that you’ve registered a Windows class, you can get on with the business of
actually creating it and displaying it to the user. To do this, you must call the
CreateWindowEx function. You guessed it—that means filling in another load of
parameters. Let’s take a look at the function prototype:

HWND CreateWindowEx(

  DWORD   dwExStyle,    // extended window style

  LPCTSTR lpClassName,  // pointer to registered class name

  LPCTSTR lpWindowName, // pointer to window name

  DWORD   dwStyle,      // window style

  int     x,            // horizontal position of window

  int     y,            // vertical position of window

  int     nWidth,       // window width

  int     nHeight,      // window height

  HWND    hWndParent,   // handle to parent or owner window

  HMENU   hMenu,        // handle to menu, or child-window identifier

  HINSTANCE hInstance,  // handle to application instance

  LPVOID  lpParam       // pointer to window-creation data

);
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dwExStyle is used to set flags for any extended styles you may want. I’ve listed some of
the available styles in Table 1.4, but it’s unlikely you’ll be using any of them for your
first few Windows programs. If you don’t require any, just set this parameter to NULL.

lpClassName is a pointer to a string, which contains the name of your Windows class.
In this example, and in all my future examples, this will be set as
g_szWindowClassName.

I always set up my Windows class name and my application name as two global
strings, g_szWindowClassName and g_szApplicationName, right at the top of main.h. I do it
this way because it makes changing the names at a later date much easier—I only
have to look in one place.

lpWindowName is the title you want to appear at the top of your application. In my
examples, this is set to g_szApplicationName.

Table 1.4 Extended Windows Styles

Style Description

WS_EX_ACCEPTFILES Specifies that a window created with this style accepts drag-
drop files.

WS_EX_APPWINDOW Forces a top-level window onto the taskbar when the window
is visible.

WS_EX_CLIENTEDGE Specifies that a window has a border with a sunken edge.

WS_EX_DLGMODALFRAME Creates a window that has a double border; the window can,
optionally, be created with a title bar by specifying the
WS_CAPTION style in the dwStyle parameter.

WS_EX_CONTEXTHELP Includes a question mark in the title bar of the window. When
the user clicks the question mark, the cursor changes to a
question mark with a pointer. If the user clicks a child window,
the child receives a WM_HELP message. The child window should
pass the message to the parent window procedure, which
should call the WinHelp function using the HELP_WM_HELP
command. The Help application displays a pop-up window that
typically contains help for the child window.

WS_EX_WINDOWEDGE Specifies that a window has a border with a raised edge.

Your First Windows Program
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dwStyle contains the flags that set the styles for your window. There are loads of
styles to choose from. Table 1.5 lists some of the more common styles.

The x, y values set the upper-left hand corner of your window. Don’t forget that in
Windows the y value at the top of your screen is zero and increases as you move
down the screen. See Figure 1.6.

nWidth and nHeight set the width and height of your window. I usually #define these
values as WINDOW_WIDTH and WINDOW_HEIGHT in the file named defines.h.

hWndParent is a handle to the parent (or owner) of your window. If this is your main
application window, set this to NULL; this tells Windows that the desktop is the parent.

hMenu is a handle to the menu you select to appear at the top of your application. I’ll
discuss menus later on in the chapter, but for now, set this parameter to NULL.

hInstance: You just pass in the hInstance from WinMain.

Table 1.5 Windows Styles

Style Description

WS_BORDER Creates a window that has a thin-line border.

WS_CAPTION Creates a window that has a title bar (includes the WS_BORDER
style).

WS_HSCROLL Creates a window that has a horizontal scrollbar.

WS_MAXIMIZE Creates a window that is initially maximized.

WS_OVERLAPPED Creates an overlapped window. An overlapped window has a
title bar and a border.

WS_OVERLAPPEDWINDOW Creates an overlapped window with the WS_OVERLAPPED,
WS_CAPTION, WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZEBOX, and
WS_MAXIMIZEBOX styles. Same as the WS_TILEDWINDOW style.

WS_POPUP Creates a pop-up window. This style cannot be used with the
WS_CHILD style.

WS_THICKFRAME Creates a window that has a sizing border.

WS_VSCROLL Creates a window that has a vertical scrollbar.
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lParam is used when you want to create a Multiple Document Interface window, but
for now, you can just forget about it and set this value to NULL.

Phew! That’s it—you are almost home and dry. This is what the completed
CreateWindowEx call from HelloWorld2 looks like:

hWnd = CreateWindowEx (NULL,                 // extended style

                       g_szWindowClassName,  // window class name

                       g_szApplicationName,  // window caption

                       WS_OVERLAPPEDWINDOW,  // window style

                       0,                    // initial x position

                       0,                    // initial y position

                       WINDOW_WIDTH,         // initial x size

                       WINDOW_HEIGHT,        // initial y size

                       NULL,                 // parent window handle

                       NULL,                 // window menu handle

                       hInstance,            // program instance handle

                       NULL);                // creation parameters

There’s just one last thing you have to do: make the window visible to the user by calling

ShowWindow (hwnd, iCmdShow);

UpdateWindow (hwnd);

ShowWindow takes two parameters. The first is the handle of the window you want to
show, which in this case is the window you just created, hWnd. The second parameter is

Figure 1.6

The topsy-turvy Windows axes.
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a flag that specifies how the window is to be shown and whether it is to be minimized,
normal, or maximized. Use the iCmdShow value which, remember, is the value the user
chooses when he creates a shortcut or puts the application in his start menu.

UpdateWindow then causes the client area of the window to be painted with whatever
brush you specified for the background.

Now, because you have registered a custom Windows class, before your program
exits, you must make sure you unregister the class. You do this by using the
UnregisterClass function. It looks like this:

BOOL UnregisterClass(

  LPCTSTR lpClassName,  // pointer to class name string

  HINSTANCE hInstance   // handle to application instance

);

Now all you do is pass this function the name you used for your custom Windows
class and its hInstance, and the job’s done.

And there you have it—your first window! There is one small problem, however.
Compile the HelloWorld2 example and run it. If you have quick eyes—very quick
actually—when you run HelloWorld2.exe, you’ll see a window flash up for a split
second and then close again. Therefore, if you want to use the newly created win-
dow, you are going to have to find a way of keeping it on the screen. And you can’t
do that by creating an endless loop after UpdateWindow. If you did, you would see your
window, but you wouldn’t be able to do anything with it at all. You wouldn’t even be
able to close it! Therefore, you need another solution, and fortunately, that solution
is provided by the marvelous, magical Windows Message Pump.

The Windows Message Pump
Whenever you open an application, Windows is working in the background—
moving your cursor, checking to see if you’ve resized or moved any Windows,
checking whether you task switch, checking if you minimize or maximize the appli-
cation, and so on. It manages to do all this because Windows is an event-driven
operating system. Events, or messages as they are more often called, are generated
when the user does something, and they are stored in a message queue until the active
application processes them. Windows creates a message whenever you move a
window, close a window, move your cursor, or press a key on your keyboard. There-
fore, the programmer, that’s you, has to find a way of reading the messages from the
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queue and processing them. Do this by using a Windows message pump immedi-
ately after UpdateWindow(hWnd) like this:

//this will hold any windows messages we grab from the queue

MSG msg;

//entry point of our message pump

while (GetMessage (&msg, NULL, 0, 0))

{

  TranslateMessage(&msg);

  DispatchMessage(&msg);

} //end message pump

The msg variable holds the messages and is a structure that is defined like this:

typedef struct tagMSG {    

    HWND   hwnd;     

    UINT   message;

    WPARAM wParam;

    LPARAM lParam;

    DWORD  time;

    POINT  pt;

} MSG;

hwnd is the handle to the window the message is directed at.

message is the message identifier. There are loads of these, and almost all of them
start with WM_. So, for example, when your application window is first created, Win-
dows puts a WM_CREATE message on the message queue, and when you close your
application, a WM_CLOSE message is generated. You can find most of these identifiers
listed in WINUSER.H. As your knowledge of Windows programming progresses, you’ll
learn how to handle more of these and even how to create your own custom mes-
sages. Some of the more common message identifiers are listed in Table 1.6.

wParam and lParam are two 32-bit parameters that contain additional information
about the message. For example, if the message is a WM_KEYUP message, the wParam
parameter contains information about which key has just been released, and lParam
gives additional information, such as the previous key state and repeat count.

time is the time the message was placed in the even cue.

Your First Windows Program
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pt is a POINT structure, which gives the coordinates of the mouse at the time the
message was placed in the queue. The POINT structure looks like this

typedef struct tagPOINT {

   LONG x;

   LONG y;

} POINT;

Now that you understand what a message is, let’s go through the message pump one
line at a time.

while (GetMessage (&msg, NULL, 0, 0))

{

GetMessage is a function that retrieves a message from the message queue. If there’s
not a message in the queue, it waits until there is one. It then obtains the message by
passing a pointer to a MSG structure for Windows to fill in. The second parameter is the
handle of the window for which you want to retrieve messages. In this example, you
want to handle all messages being passed to Windows, therefore you set this param-
eter to NULL. The third and fourth values are additional filters you needn’t be con-
cerned with here, so just set them to zero. If the message received by GetMessage is
anything other than WM_QUIT, GetMessage returns a non-zero value. When the message
has been received by GetMessage, the message is removed from the queue.

Table 1.6 Common Windows Messages

Message Description

WM_KEYUP This message is dispatched whenever the user releases a non-system key.

WM_KEYDOWN As above but when the key is pressed (no surprises there).

WM_MOUSEMOVE This message is sent whenever the cursor is moved.

WM_SIZE This message is dispatched when the user resizes a window.

WM_VSCROLL This message is sent whenever the vertical scroll bar is moved.

WM_HSCROLL I’ll let you guess this one.

WM_ACTIVATE This message is sent to both the window that is being activated by the
user and the window that’s being deactivated—the value of wParam tells
you which.
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  TranslateMessage(&msg);

When you press a key down, you get a WM_KEYDOWN message, and when you release
that key, Windows generates a WM_KEYUP message. If you press the Alt key, you gener-
ate a WM_SYSKEYDOWN message, and when you release a key that was pressed when the
Alt key was held down, you get a WM_SYSKEYUP message. You can see how the message
queue can quickly get clogged up with messages if the user is using the keyboard a
lot. TranslateMessage combines these keyboard messages into one WM_CHAR message.

  DispatchMessage(&msg);

Okay, so now you understand how to retrieve the messages from the message queue,
but you still don’t know what to do with them, do you? Well, that’s what
DispatchMessage is for. Remember a few pages back when you were registering the
Windows class, and you had to fill in the lpfnWndProc field with a function pointer to
a Windows Procedure? Well, that function—which was named WindowProc—is a callback
function to which DispatchMessage sends the message. WindowProc then handles that
message in whatever way you see fit. For example, if the user presses a key, the
message pump puts a WM_KEYDOWN message in the queue, and WindowProc then per-
forms the necessary function for that key press. If the user resizes the window, a
WM_SIZE message will be sent to your WindowProc, and, if you coded it correctly, your
display will be resized accordingly.

Therefore, the application will remain in the message pump loop, endlessly han-
dling messages until the user closes the window and a WM_QUIT message is gener-
ated—at which point GetMessage returns zero and the application exits the message
pump and shuts down. If the last few sentences were a little confusing, don’t
worry—by the time you finish the next section, it will all make sense.

The Windows Procedure
At this point, you can pat yourself on the back. You’ve come a long way in just a few
pages, and there’s only one more thing to learn before you’ve got the basics of
creating a Windows application under your belt: the Windows procedure.

A Windows procedure is defined like this

LRESULT CALLBACK WindowProc(

  HWND   hwnd;      //handle to window

  UINT   uMsg;      //the message identifier

  WPARAM wParam;    //first message

  LPARAM lParam;    //second message

};

Your First Windows Program
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LRESULT is a type defined for the return value of a Windows procedure. Normally, if
all goes well, this will be a non-zero value.

CALLBACK is used to inform Windows that
WindowProc is a callback function and is to
be called whenever Windows generates
an event that needs handling. You don’t
have to call your Windows procedure
WindowProc by the way, you can call it
anything you want, I just happen to
always call mine WindowProc.

hwnd is the handle of the window you are handling messages for.

uMsg is the message ID of the message to be processed. It’s the same as the message
field in the MSG structure.

wParam and lParam are the same as the lParam and wParam contained in the MSG struc-
ture and contain any additional information about the message you may require.

So, let’s take a look at the simple Windows procedure I’ve written for the
HelloWorld3 program:

LRESULT CALLBACK WindowProc (HWND   hwnd,

                             UINT   msg,

                             WPARAM wParam,

                             LPARAM lParam)

{

  switch (msg)

  {

    //A WM_CREATE msg is sent when your application window is first

    //created

    case WM_CREATE:

    {

      PlaySound("window_open.wav", NULL, SND_FILENAME | SND_ASYNC);

      return 0;

    }

    case WM_PAINT:

    {

      PAINTSTRUCT ps;

NOTE
It’s possible to have several windows
open simultaneously, each with a
different handle and separately
defined WindowProcs to handle
their respective messages.
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      BeginPaint (hwnd, &ps);

      //**this is where we do any drawing to the screen**

      EndPaint (hwnd, &ps);

      return 0;

    }

    case WM_DESTROY:

    {

      // kill the application, this sends a WM_QUIT message

      PostQuitMessage (0);

      return 0;

    }

  }//end switch

return DefWindowProc (hwnd, msg, wParam, lParam);

}//end WindowProc

As you can see, the WindowProc turns out to be one big switch statement. The
WindowProc shown here only handles three messages: WM_CREATE, WM_PAINT, and
WM_DESTROY, but if you run the program, you’ll see this is sufficient to give you a
window that you can move around the screen, minimize, maximize, and even resize.
See Figure 1.7. It even plays you a wav file when you open it, as a little treat for
getting this far! Great, eh? You’re really on your way now.

Let me take some time to go through each part of the WindowProc.

Figure 1.7

Your first window.
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The WM_CREATE Message
A WM_CREATE message is generated when you first create your window. The message is
grabbed by the message pump and sent to WindowProc where it is handled by the
switch statement.

case WM_CREATE:

{

  PlaySound("window_open.wav", NULL, SND_FILENAME | SND_ASYNC);

  return 0;

}

In this example, when the program enters the WM_CREATE part of the switch state-
ment, it uses the handy PlaySound feature of the API to play a wav file as the window
opens up. Because I’ve used it, I’ll take a few lines to explain that function for you.
The definition of PlaySound looks like this:

BOOL PlaySound(

  LPCSTR  pszSound,

  HMODULE hmod,

  DWORD   fdwSound

);

pszSound is a string, which specifies the sound to play. If this value is set to NULL, any
currently playing sound is stopped in its tracks.

hmod is a handle to the executable file
that contains the wav as a resource. I’ll
be going into resources in the next
chapter. Here though, I’m just specify-
ing a filename, so you can set this pa-
rameter to NULL.

fdwSound is the flag used for playing
sound. See your documentation for a
complete list, but here I’ve used
SND_FILENAME, which tells PlaySound that
pszSound is a filename, and SND_ASYNC makes sure the sound is played asynchronously.
This means that the PlaySound function will start playing the sound and then return
immediately.

NOTE
You must include the Windows
multimedia library to use the
PlaySound function. Therefore, make
sure your compiler links to
winmm.lib in your project settings
before you attempt to compile the
HelloWorld3 example.
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The WM_PAINT Message
A WM_PAINT message is generated whenever the system makes a request to paint a
portion of the application’s window. A lot of newcomers to Windows programming
think that Windows magically takes care of your window once it has been created,
but this is not the case. Every time a user moves another window in front of your
own or minimizes/maximizes/resizes your window, a WM_PAINT message is dispatched
and you have to handle the repainting. The good news is that Windows handles the
region that needs to be repainted. If only a portion of your window is overlapped
and then uncovered, Windows knows not to redraw the whole window and will only
redraw the portion that was overlapped. The region that needs repainting is usually
referred to as the invalid region or the update region. See Figure 1.8. Once a
WM_PAINT message is dispatched, and the call to BeginPaint has been made, Windows
knows the region has been validated and any other WM_PAINT messages (that may
have accumulated) are removed from the message queue.

case WM_PAINT:

{

  PAINTSTRUCT ps;

  BeginPaint (hwnd, &ps);

  //**this is where we do any drawing to the screen**

  EndPaint (hwnd, &ps);

  return 0;

}

The first thing to do when handling a WM_PAINT message is to create a PAINTSTRUCT.
This structure is used by BeginPaint to pass the information needed to paint the
Windows. Let’s take a look at the PAINTSTRUCT definition:

typedef struct tagPAINTSTRUCT {

    HDC  hdc;

    BOOL fErase;

    RECT rcPaint;

    BOOL fRestore;

    BOOL fIncUpdate;

    BYTE rgbReserved[32];

} PAINTSTRUCT;

Your First Windows Program
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hdc is a handle to a device context. For the purposes of this chapter you can ignore
it, but you’ll be using device contexts frequently in the next chapter to start drawing
into the window.

fErase tells the application whether or not the background should be repainted in
the color you specified when you created your Windows class. If this is non–zero,
the background will be repainted.

rcPaint is a RECT structure that tells the application which area has been invalidated
and needs repainting. A RECT structure is a very simple structure defining the four
corners of a rectangle, and it looks like this:

typedef struct _RECT {

    LONG left;

    LONG top;

    LONG right;

    LONG bottom;

} RECT;

The remainder of the parameters are reserved for use by Windows, therefore you
can ignore them.

Figure 1.8

How an overlapping
window produces an
invalidated region.
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When you call BeginPaint, the PAINTSTRUCT, ps, is filled in and the background is
usually redrawn. Now is the time to do any drawing to the screen, and then tell
Windows you have finished drawing by calling the EndPaint function.

The WM_DESTROY Message
This is a very important message, be-
cause it tells you the user wants to close
the application window. The normal way
of dealing with this is to call
PostQuitMessage(0), which will put a
WM_QUIT message in the message queue.
Remember, the GetMessage function used
in the message pump will return zero if
it finds a WM_QUIT message, and the
application will terminate.

case WM_DESTROY:

{

  PostQuitMessage (0);

  return 0;

}

What about the Rest?
Although you now know how to handle
three of the messages, you may be
wondering what happens to all the other
messages sent to the WindowProc that do
not get handled by you. Well, fortu-
nately, Windows has a wonderful func-
tion called DefWindowProc, which deals
with any messages you don’t handle
yourself. So, you return from your
WindowProc like this:

return DefWindowProc (hwnd, msg, wParam, lParam);

and Windows will handle the extraneous messages for you. Good, eh?

TIP
If you don’t use PostQuitMessage(0)
to send a WM_QUIT message, the
application window will close, but
your program will still be running!
This is one of the ways applications
hide away in your taskbar.

TIP
Although programs don’t generally
call Windows procedures directly,
you can choose to put messages on
the queue yourself (and therefore
have them handled by your
WindowProc) by using the SendMessage
function. You can find details of this
function in your Windows API
documentation.
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Keyboard Input
Before I finish this chapter, I want to cover basic keyboard handling. When you
depress a key, you generate a WM_KEYDOWN or WM_SYSKEYDOWN message, and when you
release a key, you generate a WM_KEYUP or WM_SYSKEYUP message. The WM_SYSKEYUP and
WM_SYSKEYDOWN messages are used for keystrokes that are generally more important to
the Windows operating system than to the application. This type of message is
produced when the user presses Alt+Tab or Alt+F4, for example. For now, you don’t
need to be concerned with the WM_SYSKEYUP or WM_SYSKEYDOWN messages, just let the
DefWindowProc do its job and handle those for you.

For all of these messages wParam holds the virtual key code of the key being pressed
and lParam contains additional information, such as the repeat count, the scan
code, and so forth. I won’t be using any of the information contained in the lParam
in this book.

Virtual Key Codes
In the old days, programmers had to write code to read keystrokes straight from the
hardware of the keyboard. Each different type of keyboard produces its own code
for each key; these are known as the scan codes. This meant that every manufacturer
had their own setups and, therefore, the code for a “c” keystroke press on one
keyboard could be the code for a “1” on another! Obviously, this was a real pain in
the backside. Fortunately, Windows solved the problem by introducing virtual key
codes. This way you don’t have to worry about the hardware, and you can just get on
with the programming. Table 1.7 lists some of the most common virtual key codes
used in games.

If the user presses a number or a letter, the virtual key code is the ASCII code for
that letter or number.

Therefore, all you have to do to read keyboard input is to code a message handler
for the WM_KEYDOWN or WM_KEYUP messages. I’ve added a simple WM_KEYUP message han-
dler in the HelloWorld4 code example to check for the Escape key being pressed. If
it detects that the Escape key has been pressed, the program will be exited. Here’s
what the relevant section of the WindowProc looks like:

case WM_KEYUP:

{

  switch(wParam)

  {

    case VK_ESCAPE:
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    {

      //if the escape key has been pressed exit the program

      PostQuitMessage(0);

    }

  }

}

As you can see, you first check for a WM_KEYUP message and then create a switch based
upon the wParam part of the message. That’s the bit that holds the virtual key code. If
the Escape key (VK_ESCAPE) is detected, the PostQuitMessage(0) call is used to send a
WM_QUIT message, and the application terminates.

Another way of grabbing information from the keyboard is by using the
GetKeyboardState, GetKeyState, or GetAsnyncKeyState functions. These can be very

Table 1.7 Commonly Used Virtual Key Codes

Key Description

VK_RETURN Enter

VK_ESCAPE Escape

VK_SPACE Spacebar

VK_TAB Tab

VK_BACK Backspace

VK_UP Up Arrow

VK_DOWN Down Arrow

VK_LEFT Left Arrow

VK_RIGHT Right Arrow

VK_HOME Home

VK_PRIOR Page Up

VK_NEXT Page Down

VK_INSERT Insert

VK_DELETE Delete

VK_SNAPSHOT Print Screen

Your First Windows Program
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handy functions, especially when you’re writing games; you can test for key presses
anywhere in your code, and you don’t need to go through the message pump.
GetAsyncKeyState is probably the most useful, because you can use it to check if just a
single key has been depressed. Its prototype looks like this:

SHORT GetAsyncKeyState(

  int vKey   // virtual-key code

);

To test if a key is pressed or not, pass the function the virtual key code of that key
and test to see if the most significant bit (the leftmost bit) of the return value is set
to 1. So, if you wanted to test for the spacebar being pressed, you’d do something
like this:

if (GetAsyncKeyState(VK_LEFT) & 0x8000)

{

  //rotate left

}

If you are curious about the other two functions, look them up in your documenta-
tion, although it’s unlikely you’ll ever need them in practice.

Tah Dah!
And that’s it! Your first Windows program is completed. Okay, so it doesn’t do
anything but sit there and wait for you to move it or close it, but I bet you feel a
terrific sense of achievement for getting this far. I know I did when I first started
Windows programming. And I can assure you, almost everything you learn from
here on will be a whole lot more fun.
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“I cannot articulate enough to express my dislike to people who think that understanding
spoils your experience… How would they know?”

Marvin Minsky

A t last, on to the fun stuff! Deep down inside, the little kid in us all loves to
draw and paint, and that’s exactly how I’m going to start this chapter. You

learned how to create a window—your blank canvas—in the previous chapter so
now all I have to do is show you how to make use of the Windows drawing, painting,
and text tools. Once you’ve had some fun with those, I’ll show you exactly what
resources are and how to use them to create your own menus, icons, mouse cursors,
and so on. By the time you’ve finished this chapter, you’ll have enough knowledge
of Windows programming to understand the code examples used in the rest of the
book—and then I can move on to the business of genetic algorithms and neural
networks. There will be the occasional extras I’ll have to cover with you later, but I’ll
go into those at the appropriate time.

The Windows GDI
The part of Windows that is responsible for drawing graphics to the screen is called
the Graphics Device Interface, or GDI for short. This is a collection of many differ-
ent functions that can be called. It includes functions for drawing shapes, drawing
lines, filling in shapes, drawing text, clipping, setting the color and width of your
drawing tools, and so on. The graphics you can display in a window can be divided
up into four different areas:

■ Text. The text parts of the GDI obviously play a very important role. I mean,
where would you be if you couldn’t output text? Fortunately, the GDI comes
with a comprehensive suite of text formatting and output tools so that you
can create and write text to the screen in just about any way you choose.

■ Lines, shapes, and curves. The GDI provides ample support for drawing
straight lines, curved lines (Bezier curves), primitive shapes (such as rectan-
gles and ellipses), and polygons. A polygon is simply a shape made up from a
series of connected points; the last point being connected to the first point to
complete the shape. To draw, you first have to create a pen to draw with, and
then you draw the required shape with that pen.
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■ Bitmaps. The GDI provides many functions for handling bitmaps. You can
load bitmaps, resize bitmaps, save bitmaps, and copy bitmaps from one place
to another. This copying is usually referred to by game programmers as
blitting.

■ Filled Areas. In addition to pens to draw with, you can also create your own
brushes. Brushes are used to fill in regions and shapes on the screen.

In addition to providing functions for
drawing and outputting text, the GDI
also has many functions for defining
regions and paths, handling clipping,
defining palettes, and outputting to
other devices, such as printers. To go
into the GDI in all its magnificent detail
would be a mammoth undertaking so all
I’m going to do is teach you the very
basics. But don’t worry, even with the
basics you can do loads of cool stuff—
as you will see.

Device Contexts
Device Contexts, or DCs as you’ll come to know them, play a very important role in
the process of drawing graphics and text using the GDI. Before you can draw to any
graphics output device, such as your screen, a printer, or even a bitmap in memory,
you have to get a handle to a device context for that device. You’ll find with Windows
that if you want to use something, you have to get a handle to it first. There are
handles to brushes, pens, cursors, desktops, the instance to your window (remem-
ber hInstance?), icons, bitmaps… the list goes on and on. I suppose handles are a bit
like licences. You need a driver’s licence to drive a car and a liquor licence to serve
beer; likewise, you need to obtain a handle to the particular type of object or device
that you want to manipulate. So you ask Windows, “Hey, is it okay for me to use this
window to draw on?” and Windows will give you a licence—the handle to that
window—so you can use it.

So How Do You Get a Handle?
There are a few ways to get a handle to a device context, or an HDC as I shall now
refer to them. One of them you’ve already seen, but you’ve probably forgotten all
about it—I know I would have, so let me jog your memory.

NOTE
The GDI is well known in the gam-
ing community for being slow. And
slow it is compared with APIs, such
as OpenGL or Microsoft’s DirectX.
But I’ve chosen to use it for my
examples because it’s simple to use
and understand, fast enough for our
requirements, and, more signifi-
cantly, my code isn’t going to be
cluttered with confusing references
to a complex API.
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Remember creating the WM_PAINT message handler in Chapter 1? The first thing
created was a PAINTSTRUCT for Windows to fill in with the details of the window. This
is what the PAINTSTRUCT looked like:

typedef struct tagPAINTSTRUCT {

    HDC  hdc;

    BOOL fErase;

    RECT rcPaint;

    BOOL fRestore;

    BOOL fIncUpdate;

    BYTE rgbReserved[32];

} PAINTSTRUCT;

Now you can see that the first field, hdc,
is the HDC. So, if you do any painting
within the WM_PAINT section of your
WindowProc, you can use hdc as the handle
to your window.

There’s another thing I didn’t tell you in
the last chapter: When you make a call
to BeginPaint, it fills in the PAINTSTRUCT for
you, as well as returning an HDC. So an
alternative way of grabbing the HDC
would be something like this:

case WM_PAINT:

{

   PAINTSTRUCT ps;

   HDC hdc;

   hdc = BeginPaint (hwnd, &ps);

   //**this is where we do any drawing using your hdc

   EndPaint (hwnd, &ps);

   return 0;

}

You don’t have to do all of your drawing in the WM_PAINT section of the WindowProc,
however. You can draw at any time, as long as you get permission from Windows by
obtaining an HDC. You can grab an HDC anytime by using the GetDC function:

HDC hdc = GetDC(hWnd);

NOTE
The handle received from a
PAINTSTRUCT is only valid for drawing
within the region defined by the RECT,
rcPaint. If you want to draw outside
this area, you should use an alterna-
tive way of grabbing an HDC.
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in which hWnd is the handle to the window you want the HDC for. Whenever you
create an HDC like this, you must always remember to release it when you are
finished using it. You do that by using the ReleaseDC function.

ReleaseDC(hWnd, hdc);

I didn’t call ReleaseDC in WM_PAINT because the function EndPaint releases the DC
automatically. If you don’t release the HDCs you create, you’ll start to get resource
leaks and your program will probably start doing all sorts of unpleasant things. It
may even crash your system. Consider yourself warned.

If you’d like, you can grab an HDC that applies to your entire window (including
the system menu and title bar areas), not just the client area. You do this by using
GetWindowDC.

HDC hdc = GetWindowDC(hWnd);

And if you really need to, you can even obtain an HDC for the entire screen if you
use NULL as the argument in GetDC.

HDC hdc = GetDC(NULL);

Cool, huh?

Okay, so now you’ve learned how to get HDCs; now let me show you how to use them…

Don’t Forget!
The thing a lot of newcomers forget is that Windows does not monitor the redrawing
of the window for you. Therefore, if you do draw outside the WM_PAINT section of your
WindowsProc, you have to make sure that whatever you draw gets redrawn if the
display needs updating (for example, if the user drags another window across your
own or minimizes and maximizes your window). Otherwise, your display will look
messy in no time at all. This is a lesson most of us learn the hard way!

Tools of the Trade: Pens, Brushes, Colors,
Lines, and Shapes
When I was a child—way back in the seventies—there was a really strange craze for a
couple of years. I mean, you get exciting crazes like the Frisbee and skateboarding,
and you get fun crazes like the SpaceHopper, and even puzzle crazes like the
Rubik’s Cube. Only a few, however, are really strange. And this craze, I remember,
was just that. Wherever you went, wherever you looked, you started to see these
pictures on walls made from pins or nails and cotton. They came in lots of different
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guises, but the simplest was made by getting a rectangular piece of wood, hammer-
ing nails at regular intervals up the left-hand side and along the bottom and then
attaching the cotton to the nails. If you think of the nails as representing the Y-axis
and X–axis, a separate piece of cotton would be attached from the first nail on the
X-axis to the last nail on the Y–axis, and then from the second nail on the X-axis to
the next to last nail on the Y–axis, and so on until you got something resembling
the curve shown in Figure 2.1.

Figure 2.1

A strange passion for curves.

Do you remember them? Kits helping you create more and more sophisticated
patterns started to be sold by the thousands. Almost everyone had one. Eventually,
just before the fad died out, there were even huge 3D ones you could buy. Ah,
such memories…

“Hold it!” I hear you say, “What does this have to do with the Windows GDI?” Well,
the first program will be emulating those wonderful works of art. You are going to
create your own masterpiece by just drawing a few lines, and it’s going to look like
Figure 2.2:

Figure 2.2

Magnificent lines.
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You can find the source for this in the GDI_Lines1 project folder on the CD. To
create all those magnificent lines, all I had to do was make some changes to the
Windows procedure you saw in Chapter 1. Here are the parts of the altered
WindowProc:

LRESULT CALLBACK WindowProc (HWND   hwnd,

                             UINT   msg,

                             WPARAM wParam,

                             LPARAM lParam)

{

    static int cxClient, cyClient;

Two static integers are defined to hold the size of the client area of the window. The
client area is the area of the window into which you draw—the area excluding the
title bar, any scrollbars, and frame. Any calculations required for the drawing are
performed using these values so that if the user resizes the window, the display is
rescaled accordingly.

    switch (msg)

    {

    case WM_CREATE:

      {

         RECT rect;

         GetClientRect(hwnd, &rect);

         cxClient = rect.right;

         cyClient = rect.bottom;

      }

      break;

When the window is first created, you need to determine the width and height of
the client area. To do this, create a RECT and pass it to the GetClientRect function,
along with a handle to the window. Then extract the information contained in rect
and use it to set cxClient and cyClient. Now you know exactly how big the canvas is.

Now on to the drawing. Take a quick look at the WM_PAINT handler, and then I’ll talk
you through the relevant parts.

case WM_PAINT:

{

   PAINTSTRUCT ps;

   BeginPaint (hwnd, &ps);

   //how many lines per side we are going to draw
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   const int NumLinesPerSide = 10;

   //calculate the step size for the line drawing based upon the

   //the window dimensions

   int yStep = cyClient/NumLinesPerSide;

   int xStep = cxClient/NumLinesPerSide;

   //now do some drawing

   for (int mult=1; mult<NumLinesPerSide; ++mult)

   {

       MoveToEx(ps.hdc, xStep*mult, 0, 0);

       LineTo(ps.hdc, 0, cyClient-yStep*mult);

       MoveToEx(ps.hdc, xStep*mult, cyClient, 0);

       LineTo(ps.hdc, cxClient, cyClient-yStep*mult);

       MoveToEx(ps.hdc, xStep*mult, 0, 0);

       LineTo(ps.hdc, cxClient, yStep*mult);

       MoveToEx(ps.hdc, xStep*mult, cyClient, 0);

       LineTo(ps.hdc, 0, yStep*mult);

   }

   EndPaint (hwnd, &ps);

}

As you can see, the drawing is fairly straightforward. Note that all the points used in
the drawing are calculated from cxClient and cyClient. This is necessary in case the
user resizes the window. I’ll be talking about that in a moment. For now, I need to
explain the functions MoveToEx and LineTo:

If you have a line that goes from A to B, MoveToEx is used to move the point of the
pen to point A, and LineTo then uses the pen to draw a line to point B. Here’s the
prototype for MoveToEx:

BOOL MoveToEx(

  HDC     hdc,          // handle to device context

  int     X,            // x-coordinate of new current position

  int     Y,            // y-coordinate of new current position

  LPPOINT lpPoint       // pointer to old current position

);
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Give this function a handle to a device context and an X and Y position, and it moves
the pen to that point without drawing. lpPoint may be used to retrieve the position of
the pen before you started drawing, just in case you have to replace the pen back to its
original position for some reason. I’m sure this is useful in some situations, but I’ve
never used it. You can just set it to NULL for now and forget all about it.

Once you have positioned the pen at the beginning of the line, use LineTo to draw
the line:

BOOL LineTo(

  HDC hdc,    // device context handle

  int nXEnd,  // x-coordinate of line's ending point

  int nYEnd   // y-coordinate of line's ending point

);

Again, you need to give LineTo an HDC so it knows into which device it’s supposed
to draw, and two points telling it the coordinates of what location to draw the line
to.

And that’s how you draw lines! Simple, huh? I just need to explain one more part of
the WindowProc.

    case WM_SIZE:

     {

       cxClient = LOWORD(lParam);

       cyClient = HIWORD(lParam);

     }

     break;

It would be a good idea for you to compile the GDI_Lines_1 example without this
WM_SIZE handler and then try resizing the window. Nasty, eh? That’s why you need to
keep track of the client area if you allow your user to resize.

When a user changes the dimensions of a window, a WM_SIZE message is dispatched.
The dimensions of the new window are passed to the WindowProc in the high and low
bytes of the 32-bit integer, lParam. Figure 2.3 shows how this information is arranged
in lParam. HIWORD and LOWORD are Windows macros that you can use to extract this

Figure 2.3

Inside lParam and
wParam.
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information. Then update cxClient and
cyClient with the new window dimen-
sions, and because you used these two
variables as the basis for all the drawing
calculations, the drawing is scaled
accordingly.

Creating Custom Pens
The preceding example drew lines using
the default black brush, but what if you
want to draw in different colors and use
different pen thicknesses? To do this,
you must create your own custom pen,
and you do that by using the CreatePen
function. Let’s take a look at this func-
tion:

HPEN CreatePen(

  int      fnPenStyle,    // pen style

  int      nWidth,        // pen width

  COLORREF crColor        // pen color

);

fnPenStyle is a flag that defines how the pen draws its lines. Take a look at Table 2.1
to see the most common styles.

TIP
You can prevent the user from
resizing your window a number of
ways, but the simplest is by remov-
ing the WS_THICKFRAME flag when you
call CreateWindowEx. If you look up
WS_OVERLAPPEDWINDOW in your docu-
mentation, you will find that it’s a
timesaver—a combination of several
flags, one of which is WS_THICKFRAME.
To achieve the same results as
before, but without WS_THICKFRAME,
use the flags:

WS_OVERLAPPED | WS_VISIBLE |

WS_CAPTION | WS_SYSMENU

Try it and see what happens when
you attempt to resize your window.

Table 2.1 Pen Drawing Styles

Style Description

PS_SOLID The pen draws a solid line.

PS_DASH The pen draws a dashed line.

PS_DOT You guessed right—the pen draws a dotted line.

PS_DASHDOT The pen alternates between dashes and dots.

PS_DASHDOTDOT The pen alternates between one dash and two dots.
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nWidth  sets the width of the pen in logical units. For our purposes, you can simply
think of this as the width of the pen in pixels. If you set this value to zero, the pen
will assume a thickness of one.

crColor is a COLORREF that defines the color you want the pen to be. Every color you
see on your monitor is made up of just three colors: red, green, and blue. It is the
varying combinations of the intensities of these three base colors that combine to
create the spectrum of available colors. Each color is represented by one byte in a
COLORREF, which means that you can assign intensities of between 0 and 255, with 255
being the brightest.

When defining a color, it is normal to set the intensities in red, green, and blue
order. For example, the color (255, 255, 255) is white, (0, 0, 0) is black, (255, 0, 0)
is bright red, and so on. Windows helps to create a COLORREF by providing a helpful
little macro called RGB. So, to create the COLORREF for red, you write RGB(255, 0, 0).

CreatePen returns a handle to the pen you’ve just created. Let’s create a solid red
pen with a width of two pixels:

HPEN RedPen = CreatePen(PS_SOLID, 2, RGB(255, 0, 0);

And that’s it. RedPen now contains a handle to the custom-defined pen. To use the
pen, you must first select it into the device context so that the device knows which
pen to draw with. You do this by using the SelectObject function.

HGDIOBJ SelectObject(

  HDC     hdc,          // handle to device context

  HGDIOBJ hgdiobj       // handle to object

);

This is a multi-purpose function that is
used to select not only pens into the
device context, but also bitmaps,
brushes, fonts, and regions. That is why
you pass it an HGDIOBJ (handle to a GDI
object) and not an HPEN. SelectObject
returns a handle to the object selected
in the DC when the function is called.
This is so you can keep a copy of the
state of the DC before you start drawing and restore it later when you have finished.
Because the function uses HGDIOBJs, you have to cast appropriately—in this case to
HPEN. So, to select the red pen into the device context, do this:

HPEN OldPen = (HPEN)SelectObject(hdc, RedPen);

NOTE
You can only have one pen selected
into the device context at a time. To
change pens, you must use
SelectObject again to select another
pen into the DC.
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After you finish your drawing, select the old pen back into the DC to tidy up.

SelectObject(hdc, OldPen);

Before your program terminates, you must make sure any pens you have created (or
other objects, such as brushes and bitmaps) are deleted. To delete a pen use the
DeleteObject function.

BOOL DeleteObject(

  HGDIOBJ hObject   // handle to graphic object

);

If you don’t remember to delete your GDI objects, you will get resource leaks. This,
as you may imagine, is a bad thing. Also, make sure you don’t try to delete a GDI
object that is already selected into the DC.

And that’s all there is to creating pens. I’ve altered the code from GDI_Lines1 to
use custom pens. Be warned—the colors I use are pretty nasty so you may feel a
little nauseous! Now would be a good time for you to look at the source
(GDI_Lines2) and play around with creating your own pen styles.

TIP
You can draw individual pixels onto the screen using the
SetPixel function. It looks like this:

COLORREF SetPixel(

  HDC      hdc,           // handle to device context

  int      X,             // x-coordinate of pixel

  int      Y,             // y-coordinate of pixel

  COLORREF crColor        // pixel color

);

And you can grab the color of a pixel at any coordinate on
your display by using the GetPixel function:

COLORREF GetPixel(

  HDC hdc,    // handle to device context

  int nXPos,  // x-coordinate of pixel

  int nYPos   // y-coordinate of pixel

);
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Brushes
Brushes are used to fill in or paint shapes. Let’s say you want to draw a rectangle,
and you want the region it encloses to be painted in orange. You first create an
orange brush, and then you draw the rectangle with that brush.

Creating brushes is very similar to creating pens: you create your brush, then you select
it into the device context, and when you are done using it, you delete it. There are also
the Windows stock brushes to use, but they are all black, white, or shades of gray (with
one exception—the NULL_BRUSH, which is invisible). The default brush is white.

Unlike creating pens, there are several ways you can create a brush. Let’s quickly go
through them.

CreateSolidBrush

This function is the simplest to use. It creates a brush that will fill in a region with a
block of solid color.

HBRUSH CreateSolidBrush(

  COLORREF crColor   // brush color value

);

All you do here is give the function a COLORREF, and it will return a handle to the
custom brush.

CreateHatchBrush

This brush paints using hatch marks defined by the flag fnStyle. The available styles
are shown in Figure 2.4.

HBRUSH CreateHatchBrush(

  int      fnStyle,   // hatch style

  COLORREF clrref     // color value

);

CreatePatternBrush

You can even define brushes that paint with bitmaps! All you need is a handle to a
bitmap, and the brush will fill in the specified region with it. The function proto-
type looks like this.

HBRUSH CreatePatternBrush(

  HBITMAP hbmp   // handle to bitmap

);

The Windows GDI
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There are a couple of other ways to create brushes—CreateBrushIndirect and
CreateDIBPatternBrushPt—but it’s not necessary to go into the details of them in this
book. They are very infrequently used.

Now that you know what a brush is, let’s have a look at some of the different shapes
you can draw with the GDI.

Shapes
There are loads of shape types you can draw with the GDI. Each shape normally
consists of a border drawn with the currently selected pen and an enclosed region
that is painted with the current brush. Figure 2.5 illustrates most of the shape types
you can draw.

Let me take a moment to go through some of the more useful shape drawing
functions with you.

Rectangle

Rectangle is the simplest of the shape-drawing functions. Here’s what the prototype
looks like:

BOOL Rectangle(

  HDC hdc,         // handle to device context

Figure 2.4

Brush pattern style flags.
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  int nLeftRect,   // x-coord of bounding rectangle's upper-left corner

  int nTopRect,    // y-coord of bounding rectangle's upper-left corner

  int nRightRect,  // x-coord of bounding rectangle's lower-right corner

  int nBottomRect  // y-coord of bounding rectangle's lower-right corner

);

All you do is pass this function a handle to your device context and the coordinates
for the upper-left and bottom-right corner of the rectangle, as shown in Figure 2.6.

Figure 2.5

Typical GDI shapes.

Figure 2.6

The coordinates that define a rectangle.

There are also two other rectangle functions you may find useful: FrameRect and
FillRect.

FrameRect draws a border around the specified rectangle and with the specified brush.
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int FrameRect(

  HDC         hDC,   // handle to device context

  CONST RECT *lprc,  // pointer to rectangle coordinates

  HBRUSH      hbr    // handle to brush

);

And FillRect simply fills the area you specify with the current brush.

int FillRect(

  HDC         hDC,   // handle to device context

  CONST RECT *lprc,  // pointer to structure with rectangle

  HBRUSH      hbr    // handle to brush

);

Ellipse

The Ellipse function is almost the same as the Rectangle function.

BOOL Ellipse(

  HDC hdc,        // handle to device context

  int nLeftRect,  // x-coord of bounding rectangle's upper-left corner

  int nTopRect,   // y-coord of bounding rectangle's upper-left corner

  int nRightRect, // x-coord of bounding rectangle's lower-right corner

  int nBottomRect // y-coord of bounding rectangle's lower-right corner

);

To draw an ellipse, you just specify coordinates as if you were drawing a rectangle
that encloses the ellipse shape you want. Figure 2.7 shows you how this works.

Figure 2.7

The ellipse shape.

So, if you want to draw a circle, all you have to do is pass the function coordinates
that describe a square bounding box. It’s as easy as that.
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Polygon

A polygon is defined by a series of connected points that enclose an area. The last
point is always connected to the first point. Figure 2.8 shows you what I mean.

The points of a polygon are often referred to as vertices. Here’s what the Polygon

prototype looks like:

BOOL Polygon(

  HDC          hdc,               // handle to device context

  CONST POINT *lpPoints,          // pointer to polygon's vertices

  int          nCount             // count of polygon's vertices

);

This function takes a pointer to a list of POINT structures describing the coordinates
of each vertex and also an integer that is the total number of vertices the shape
contains. The POINT structure just defines a point in space; it looks like this:

typedef struct tagPOINT {

    LONG x;

    LONG y;

} POINT;

Figure 2.8

The polygon shape.
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I’ve written a sample program that will draw a new polygon to the screen every time
you press the spacebar. You’ll find the source code in the Chapter2/GDI_Polygon
folder on the CD. Here’s a listing of the relevant parts of the WindowProc:

LRESULT CALLBACK WindowProc (HWND   hwnd,

                             UINT   msg,

                             WPARAM wParam,

                             LPARAM lParam)

{

    //create some pens to use for drawing

    static HPEN BluePen  = CreatePen(PS_SOLID, 1, RGB(0, 0, 255));

    static HPEN OldPen   = NULL;

    //create a solid brush

    static HBRUSH RedBrush = CreateSolidBrush(RGB(255, 0, 0));

    static HBRUSH OldBrush = NULL;

    //these hold the dimensions of the client window area

    static int cxClient, cyClient;

    //this will hold the vertices of the polygons we create

    static POINT verts[NUM_VERTS];

    //number of verts to draw

    static int iNumVerts = NUM_VERTS;

Here I’ve set up the variables used in the drawing. Notice that I created a pen to
draw the outline and a brush to fill the interior. NUM_VERTS is #defined in defines.h.

    switch (msg)

    {

    case WM_CREATE:

      {

         RECT rect;

         GetClientRect(hwnd, &rect);

         cxClient = rect.right;

         cyClient = rect.bottom;

         //seed random number generator
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         srand((unsigned) time(NULL));

         //now lets create some random vertices

         for (int v=0; v<iNumVerts; ++v)

         {

           verts[v].x = RandInt(0, cxClient);

           verts[v].y = RandInt(0, cyClient);

         }

      }

      break;

When the WM_CREATE message is dispatched, the random number generator is seeded,
and verts is filled with random coordinates. Each coordinate represents a vertex
of the polygon. RandInt is part of a group of random number functions defined in
the file utils.h. It simply returns a random integer between the two parameters
passed to it.

 case WM_KEYUP:

      {

        switch(wParam)

        {

        case VK_SPACE:

          {

            //create some new points for our polygon

            //now lets create some random vertices

            for (int v=0; v<iNumVerts; ++v)

            {

              verts[v].x = RandInt(0, cxClient);

              verts[v].y = RandInt(0, cyClient);

            }

             //refresh the display so we can see our

              //new polygon

              InvalidateRect(hwnd, NULL, TRUE);

              UpdateWindow(hwnd);

          }

          break;

        }

      }
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If the spacebar is pressed and released, a WM_KEYUP message is displayed. The pro-
gram checks for this, and creates new random coordinates for the polygon. The
important thing to notice here are the calls to InvalidateRect and UpdateWindow.
InvalidateRect called with NULL as the second parameter tells Windows to add the
entire client area to its update region. The update region represents the portion of
the window’s client area that must be redrawn the next time a WM_PAINT is per-
formed. UpdateWindow simply sends a WM_PAINT message if there is a region that needs
updating (hence our call to InvalidateRect first). It sends the WM_PAINT message
directly to the WindowProc without putting it in the message queue first. This ensures
that the window is updated immediately. The end result of these two little lines is
that the client area gets redrawn, and you can see the newly created polygon.

    case WM_PAINT:

      {

         PAINTSTRUCT ps;

         BeginPaint (hwnd, &ps);

         //first select a pen to draw with and store a copy

         //of the pen we are swapping it with

         OldPen = (HPEN)SelectObject(ps.hdc, BluePen);

         //do the same for our brush

         OldBrush = (HBRUSH)SelectObject(ps.hdc, RedBrush);

         //draw the polygon

         Polygon(ps.hdc, verts, iNumVerts);

         //replace the original pen

         SelectObject(ps.hdc, OldPen);

         //and brush

         SelectObject(ps.hdc, OldBrush);

         EndPaint (hwnd, &ps);

      }

      break;

The WM_PAINT section is pretty straightforward. You can see that the first thing I do is
select the custom pen and brush into the DC. Then the call to Polygon is made using
the vertices in verts.
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And that’s all there is to it. Play with the code for a while, and create some brushes
and shapes of your own before you move on to the next section of this chapter.

Text
So far, you’ve learned how to draw and paint on your canvas, but you still haven’t a
clue how to sign your name on it! This section will rectify that.

As you can imagine, Windows has a lot of functions for displaying and manipulating
text and fonts. I could write several chapters describing everything you could do
with text with the windows API; however, for the purposes of this book (and my
sanity), I’m just going to show you the basics.

TextOut
The easiest way to get text on your screen is the TextOut function. Let’s take a look at it.

BOOL TextOut(

  HDC      hdc,           // handle to device context

  int      nXStart,       // x-coordinate of starting position

  int      nYStart,       // y-coordinate of starting position

  LPCTSTR  lpString,      // pointer to string

  int      cbString       // number of characters in string

);

As you can see, all the parameters are self-explanatory. You just give TextOut a handle
to a DC, the coordinates of where you want your text to appear, a pointer to the text
itself, and an integer describing the length of the text. The default color for the text
is black (no surprises there), and the default background color is WHITE_BRUSH. I’ll be
describing how to change the defaults in a moment, but first I want to show you
another way of displaying text.

DrawText
DrawText is slightly more complex than TextOut. Its prototype looks like this:

int DrawText(

  HDC     hDC,          // handle to device context

  LPCTSTR lpString,     // pointer to string to draw

  int     nCount,       // string length, in characters

  LPRECT  lpRect,       // pointer to struct with formatting dimensions

Text
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  UINT    uFormat       // text-drawing flags

);

This function draws text within a text box defined by lpRect. The text is formatted
within the box according to the flags set with uFormat. There are a whole load of
flags; Table 2.2 illustrates a few of them.

Adding Color and Transparency
Fortunately, you can define your own background and foreground colors, and you
can also set the transparency of the text. To set the color of the actual text, use
SetTextColor

COLORREF SetTextColor(

  HDC      hdc,      // handle to device context

  COLORREF crColor   // text color

);

and to set the background color, use SetBkColor.

COLORREF SetBkColor(

  HDC      hdc,      // handle of device context

  COLORREF crColor   // background color value

);

Table 2.2 DrawText Formatting Flags

Flag Description

DT_BOTTOM The text gets justified to the bottom of the text box. If you include
this flag, you must also include DT_SINGLELINE.

DT_CENTER This flag centers the text horizontally with the text box.

DT_LEFT Aligns text to the left.

DT_RIGHT Aligns text to the right.

DT_SINGLELINE Displays all text on a single line. Carriage returns do not break the line.

DT_TOP Aligns text to the top.

DT_WORDBREAK This flag acts like word wrap.
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As you can see, they are very simple functions. Once set, the foreground and back-
ground colors will remain until you change them again. Both functions return the
current color value so that you can keep a note of the original settings and restore
them later if necessary.

As an example, to set the text color to red and the background to black, you do this:

//set text to red

SetTextColor(ps.hdc, RGB(255, 0, 0));

//background to black

SetBkColor(ps.hdc, RGB(0, 0, 0));

In addition to being able to set the background and foreground colors, you may
also set the transparency. This sets the background pixels of the text output to
display as transparent. (For example, if there were a pattern behind the text, it
would look as though the text was printed directly onto the pattern.)

You can set the background transparency using the SetBkMode function:

int SetBkMode(

  HDC hdc,      // handle of device context

  int iBkMode   // flag specifying background mode

);

There are only two flags: OPAQUE and TRANSPARENT. So to draw text with a transparent
background, you just set the mode accordingly before you do any text drawing.

The GDI_Text source code illustrates the use of all these different functions. Figure
2.9 shows a screenshot. Can you guess which films the quotes are from?

Figure 2.9

Different ways of rendering text.

Text
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A Real-Time Message Pump
In the GDI_Polygon example, pushing the spacebar every time to display a new poly-
gon on the screen could get a little tedious. What if you wanted to hypnotize the
user by rapidly flashing polygons in quick succession? With GetMessage, it’s impos-
sible. If there are no messages already in the queue, GetMessage just sits there and
waits—like a patient fisherman—until a new message comes along. Because a lot of
games happen to be of the action-packed, keyboard-bashing, temple-throbbing
variety, the simple GetMessage message pump is usually not a good choice. You don’t
want your game to be motionless until the user does something—you want your
aliens to be dashing about in the background, stalking you, hunting you down. To
achieve this, you need a message pump that will only handle messages if there’s a
message to be handled, and the rest of the time lets your game code get on with the
exciting stuff. To do this, you use the PeekMessage function. It looks like this:

BOOL PeekMessage(

  LPMSG lpMsg,         // pointer to structure for message

  HWND hWnd,           // handle to window

  UINT wMsgFilterMin,  // first message

  UINT wMsgFilterMax,  // last message

  UINT wRemoveMsg      // removal flags

);

As you can see, it’s very similar to the GetMessage function. The only difference is the
last parameter, wRemoveMsg. This can be set to either PM_NOREMOVE, which means the
message is not removed from the queue after processing, or PM_REMOVE, which re-
moves the message from the queue—usually you’ll want the message removed.
PeekMessage will return true if there is a message waiting, or false if there isn’t.

Creating a real-time message pump is a little more complicated than before because
if you just replace GetMessage with PeekMessage, as soon as there is no message in the
queue, PeekMessage returns a zero and the application terminates. Try it and see;
replace the message pump in the polygon example with this:

while (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE))

{

    TranslateMessage (&msg);

    DispatchMessage (&msg);

}
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All you get is an application window that flashes open and then immediately shuts
down. What you need is something much more robust—and this is it:

// Enter the message loop

bool bDone = false;

MSG msg;

while(!bDone)

{

  while( PeekMessage( &msg, NULL, 0, 0, PM_REMOVE ) )

  {

    if( msg.message == WM_QUIT )

    {

      // Stop loop if it's a quit message

      bDone = true;

    }

    else

    {

      TranslateMessage( &msg );

      DispatchMessage( &msg );

    }

  }

  //this will call WM_PAINT that will render our scene

  InvalidateRect(hWnd, NULL, TRUE);

  UpdateWindow(hWnd);

}//end while

This message pump loops around the while(!bDone) loop until bDone becomes true.
Each time through the loop, the PeekMessage function checks to see if there is a
message waiting in the queue. If there is a message, it first checks to see if the
message is a WM_QUIT message, in which case bDone is set to true and the application
exits. If the message is not a WM_QUIT message, then it’s processed and dispatched as
you saw in earlier examples, and the message is removed from the queue. If there is
no message to be processed, you can see that the loop then uses InvalidateRect and
UpdateWindow to invoke WM_PAINT to redraw the window. When you are coding your
game, this is the place you would also put your main game loop.

Text
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Take a look at the GDI_Polygons2 example to see this message pump in action. You
will notice that the WM_PAINT section of the WindowProc now contains code to generate
new polygons, and that I use the handy little function, Sleep to slow down the
program a few milliseconds so you can actually see the polygons. To use Sleep, you
just pass it a value representing the number of milliseconds you want the function
to wait before it allows your program to continue.

How to Create a Back Buffer
When you’re programming games, or any program in which the display gets updated
many times a second, you quickly run into the flickering screen problem. I’ve written
a little demo to show you what I mean. You will find the code in the GDI_Backbuffer
folder. Please take a look at this program in action. You’ll find that it just bounces
some balls around the screen. Figure 2.10 is a screenshot of the program:

Figure 2.10

Balls!

What the screenshot can’t show you is how the balls flicker as they are displayed.
Nasty, isn’t it? This happens because of the way your monitor works.

The inside surface of the display on your monitor is coated with three different
kinds of phosphors that react when hit by a beam of electrons by emitting red,
green or blue light. The relative brightness of each of these colors determines the
color you eventually see on your screen. That’s why earlier, when you learned about
COLORREFS, you defined colors based on red, green, and blue (RGB). At the rear of
your monitor is an electron gun. This is a device that emits high speed electrons.
The electrons are aimed using an electromagnetic field. To draw an image, the gun
starts off at the upper-left corner of the display and then moves horizontally to the
right, shooting the phosphors a pixel at a time. When it reaches the end of a line, it
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moves back to the left and down a pixel and then starts all over again. It does this
until it reaches the bottom-right corner of your display, and then it returns to its
starting position, where the whole process is repeated again. Figure 2.11 shows the
route the gun takes. The time it takes the electron gun to move back to the upper-
left corner is called the vertical refresh rate and the number of times this process is
repeated per second is called the refresh rate. (Bet a few of you always wondered what
that was, eh?)

It’s this process of updating the display that creates the flickering—basically, the
program is drawing to the screen while the gun is still moving across it. So, your
display ends up flashing, flickering, and tearing. Fortunately, there is a way to
prevent this: by using a back buffer.

The front buffer is an area of memory that is mapped directly to your display. As
soon as you draw something on it, whatever you have drawn will appear immediately
on your screen. The front buffer is what you’ve been drawing to in all the code
samples up until now. When you get your HDC from BeginPaint in the WM_PAINT
section of your WindowProc, you are getting the HDC to the front buffer.

To prevent the flickering, you need to
create another area in memory—in
exactly the same format and size as the
front buffer—and do all the drawing
there. This will be the back buffer.
Because you are drawing to an off-screen
area of memory, you won’t see anything
at all. So, what you have to do (for every
frame) is copy the contents of the back

Figure 2.11

How your screen updates.

TIP
Occasionally game coders require a
third buffer to make the display even
smoother. This is known as triple
buffering.And nowadays, with the
introduction of graphics accelerators,
it’s even possible to create whole
chains of buffers, many levels deep.

How to Create a Back Buffer
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buffer onto the front buffer. (This is often referred to as blitting.) Because this
happens all at once, the screen update doesn’t mess with the movement of the
electron gun. And there you have it—flicker-free display. This technique is most
often referred to as double buffering and occasionally as page flipping.

That Sounds Great, but How Do You Do It?
Because you are creating an area in memory to represent the front buffer (the
display area), the first thing you need to do is create a memory device context that is
compatible with the DC for the display. There are three stages to this.

First, you use the function CreateCompatibleDC to create a memory device context.

HDC hdcBackBuffer = CreateCompatibleDC(NULL);

When NULL is passed as a parameter, Windows defaults to creating a DC compatible
with the current screen—and that’s exactly what you want.

Unfortunately, when a memory device context is created, it is monochrome and
only one pixel in height and width. Not much use to anyone! So, before you can use
it to draw to, you have to create a bitmap that is exactly the same dimensions and
format as the front buffer, and then select it into the memory DC, using the good
ol’ SelectObject function. This is the second stage.

You can create a bitmap by using the CreateCompatibleBitmap function. Its prototype
looks like this:

HBITMAP CreateCompatibleBitmap(

  HDC hdc,        // handle to device context

  int nWidth,     // width of bitmap, in pixels

  int nHeight     // height of bitmap, in pixels

);

You pass this function the display’s HDC and the height and width, and it will
return a handle to a bitmap created in memory. So…

You first grab a handle to the device context using the GetDC function mentioned
earlier in this chapter

HDC hdc = GetDC(hwnd);

And then you create the compatible bitmap

HBITMAP hBitmap = CreateCompatibleBitmap(hdc,

                                         cxClient,

                                         cyClient);
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And that just leaves one last thing to do—select this bitmap into the memory device
context you created in stage one. Once that is done, hdcBackBuffer will be set up
exactly the same as the DC for the front buffer, and you can start drawing to it. This
is done by using the SelectObject function:

HBITMAP hOldBitmap = (HBITMAP)SelectObject(hdcBackBuffer, hBitmap);

A copy of the existing 1×1 pixel mono bitmap is kept so you can select it back when
you finish using the back buffer to tidy up. (The same way you have been doing with
pens and brushes.)

All these stages in the new bouncing ball example are performed in WM_CREATE. This
is what the relevant lines of the WindowProc look like. (I have omitted the ball setup
stuff for clarity.)

LRESULT CALLBACK WindowProc (HWND   hwnd,

                             UINT   msg,

                             WPARAM wParam,

                             LPARAM lParam)

{

   //these hold the dimensions of the client window area

   static int cxClient, cyClient;

   //used to create the back buffer

   static HDC       hdcBackBuffer;

   static HBITMAP   hBitmap;

   static HBITMAP   hOldBitmap;

    switch (msg)

    {

    case WM_CREATE:

      {

         //get the client area

         RECT rect;

         GetClientRect(hwnd, &rect);

         cxClient = rect.right;

         cyClient = rect.bottom;

         //now to create the back buffer

         //create a memory device context

How to Create a Back Buffer
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         hdcBackBuffer = CreateCompatibleDC(NULL);

         //get the DC for the front buffer

         HDC hdc = GetDC(hwnd);

         hBitmap = CreateCompatibleBitmap(hdc,

                                          cxClient,

                                          cyClient);

         //select the bitmap into the memory device context

         hOldBitmap = (HBITMAP)SelectObject(hdcBackBuffer, hBitmap);

         //don't forget to release the DC!

         ReleaseDC(hwnd, hdc);

      }

      break;

Okay, I Have My Back Buffer,
Now How Do I Use It?
Once you’ve created your back buffer, it’s easy sailing. To use it, all you have to
do is this.

1. Clear the back buffer—this is usually done by filling it with the background color.

2. Draw your graphics, text, and so on by using the hdc you have for your back buffer.

3. Copy the contents of your back buffer to the front buffer.

Let’s go through it, step by step.

To fill the back buffer with a solid color (usually your background color), use the
BitBlt function. This function normally copies all the bits in one area of memory—
your back buffer—to the bits in another area of memory—your display. Figure 2.12
shows an example. However, you can also use this function to fill an area with a
block of color.

The BitBlt function is defined as:

BOOL BitBlt(

  HDC   hdcDest, // handle to destination device context

  int   nXDest,  // x-coordinate of destination rectangle's upper-left
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                 // corner

  int   nYDest,  // y-coordinate of destination rectangle's upper-left

                 // corner

  int   nWidth,  // width of destination rectangle

  int   nHeight, // height of destination rectangle

  HDC   hdcSrc,  // handle to source device context

  int   nXSrc,   // x-coordinate of source rectangle's upper-left

                 // corner

  int   nYSrc,   // y-coordinate of source rectangle's upper-left

                 // corner

  DWORD dwRop    // raster operation code

);

You pass this function a handle to the source DC and a handle to the destination
DC together with their respective upper-left corner coordinates and the width and
height of the area you want copied. The final parameter is a flag that indicates how
you want the color data in the source to be merged with the data in the destination.
There are loads of these flags, and you can achieve all sorts of weird and wonderful
effects with them, but for now, the only flags you are interested in are SRCCOPY, which
will copy the bits exactly as they are into the destination area, and WHITENESS, which
will fill the destination area with white—RGB(255, 255, 255)—pixels.

Here’s the source code for WM_PAINT. For clarity, I’ve omitted the code that updates
and draws the balls.

Figure 2.12

The BitBlt in action.

How to Create a Back Buffer
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case WM_PAINT:

  {

    PAINTSTRUCT ps;

    BeginPaint (hwnd, &ps);

    //fill our backbuffer with white

    BitBlt(hdcBackBuffer,

           0,

           0,

           cxClient,

           cyClient,

           NULL,

           NULL,

           NULL,

           WHITENESS);

To fill the back buffer with white pixels, simply pass BitBlt the dimensions of the
client area, set all the parameters for the source to NULL, and use the WHITENESS flag to
set all the pixels to RGB(255, 255, 255).

     //------------------------------------------------------------------

     //This is where all the drawing is performed.

     //------------------------------------------------------------------

Remember, to draw, you now use the hdc for the back buffer you created in WM_PAINT:
hdcBackBuffer.

     //now blit backbuffer to front

     BitBlt(ps.hdc,

            0,

            0,

            cxClient,

            cyClient,

            hdcBackBuffer,

            0,

            0,

            SRCCOPY);

         EndPaint (hwnd, &ps);

 }
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This is where the contents of the back
buffer are copied into the DC for the
window. BitBlt is used again, but this
time you give the function the relevant
parameters for the memory DC and set
the dwRop flag to SRCCOPY; that tells the
function to copy the memory DC exactly
as is. That way, whatever you have drawn
to the back buffer gets displayed on the
screens.

So, that’s how you create and render to a
back buffer. However, if you just insert
the code as I have described, you will
still see a flickering display. The reason for this is that when you created the class for
your window by filling in a WNDCLASSEX structure, you set the background color to
white. So, even though you are using a back buffer to render to, when BeginPaint is
called, the API fills your window with its background color, and this produces some
flickering. To rid yourself of this problem, you can just set the appropriate member
of your WNDCLASSEX structure to NULL.

winclass.hbrBackground = NULL;

Keeping It Tidy
Because you’ve created a bitmap and a memory DC, you have to make sure you
delete them when your game terminates, or you will end up with resource leaks.
This is very simple to do. First, you select back into the memory DC, hdcOldBitmap,
which frees up your bitmap for deletion. Then you can safely delete the DC and the
bitmap. Here’s the code from WM_DESTROY to do that:

SelectObject(hdcBackBuffer, hOldBitmap);

DeleteDC(hdcBackBuffer);

DeleteObject(hBitmap);

Finally, you have to make sure the back buffer is resized if the user resizes the
window. To do this, you must delete the existing compatible bitmap and create a
new one of the appropriate size. All this is done inside WM_SIZE, like so:

case WM_SIZE:

  {

TIP
BitBlt is useful for many things, but
it is commonly used to copy sprites
to the screen in 2D games and the
HUD/stats in 3D games. A sprite is a
2D bitmap, or if animated, a series of
bitmaps that are loaded into
memory and then copied to the
required coordinates of the display
area. Remember Sonic the Hedge-
hog? He was a sprite.

How to Create a Back Buffer
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     //if so we need to update our variables so that any drawing

     //we do using cxClient and cyClient is scaled accordingly

     cxClient = LOWORD(lParam);

     cyClient = HIWORD(lParam);

     //now to resize the backbuffer accordingly. First select

     //the old bitmap back into the DC

     SelectObject(hdcBackBuffer, hOldBitmap);

      //don't forget to do this or you will get resource leaks

      DeleteObject(hBitmap);

      //get the DC for the application

      HDC hdc = GetDC(hwnd);

      //create another bitmap of the same size and mode

      //as the application

      hBitmap = CreateCompatibleBitmap(hdc,

                                       cxClient,

                                       cyClient);

      ReleaseDC(hwnd, hdc);

      //select the new bitmap into the DC

      SelectObject(hdcBackBuffer, hBitmap);

}

break;

Voilá! A flicker-free display.

Using Resources
A resource is any data your game may use that is combined with your compiled
code to make just one executable file. This data may include bitmaps, sound files,
icons, and cursors. See Figure 2.13. In fact, it may include anything your program
needs to run. It can be useful to include your data files as resources because it keeps
everything nice and tidy—you don’t need many separate image and sound files—
and also it prevents anyone from easily stealing your artwork or other files you’ve
worked so hard to create.
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Although you can create custom-built resources, the predefined resource types will
usually be enough for your requirements. The most common ones are

■ Icons. The small icon you see in the upper-left corner of the application window,
or the icon you see in Windows Explorer, or when you task switch using Alt+Tab.

■ Cursors. You can use any of the default cursors, or you can create your own
custom cursors to use.

■ Strings. Although this might seem like a strange option for a resource, it can
actually be a pretty good idea to keep all the character strings you use in one
place. Why, you ask? Well, if you keep them all in one place, it makes it very
easy to convert your game into different languages, or make small alterations
without having to wade through thousands of lines of code listings.

■ Menus. Most often you’ll be using your own custom interface for games, but
you’ll also regularly require this type of menu for any tools you may need to code.

■ Bitmaps. These are image files that consist of an array of pixels. Windows
provides support for bitmaps with the BMP file extension.

■ Sound files. You can include all your sound files (wav files) as resources.
■ Dialog boxes. You can either use the predefined dialog boxes, such as MessageBox,

or you can create your own custom-built ones and store them as a resource.

Now that you know what resources are, let me show you how to create them.

Figure 2.13

The organization of resources.

Using Resources
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Icons
You can create two sizes of icons: a large icon that is 32×32 pixels or a small icon
that is 16×16 pixels. The larger icon is displayed in the icon list you see when you
Alt+Tab between applications, and the smaller icon is the one you see in Explorer
and in the upper-left corner of your window.

You can either create your icons in your favorite paint program and save them with
the .ico file extension, or if you use Microsoft Developer Studio, you can create
them with the built-in icon editor. To do the latter, select Insert, Resource, Icon,
New, and a simple editor window will appear, as shown in Figure 2.14.

Figure 2.14

Insert resource options.

Now, just create your icons (one large and one small), give them meaningful names,
such as IDI_ICON_SM and IDI_ICON_LRG, and then save them as a resource—a file with
the .rc extension. You will find that Developer Studio will automatically generate a
resource.h file that you must #include in your main source file.

All you have to do to make your icons appear is reference them when you register
your windows class, like so:

WNDCLASSEX     winclass;

// first fill in the window class stucture

winclass.cbSize        = sizeof(WNDCLASSEX);

winclass.style         = CS_HREDRAW | CS_VREDRAW;

winclass.lpfnWndProc   = WindowProc;

winclass.cbClsExtra    = 0;

winclass.cbWndExtra    = 0;

winclass.hInstance     = hInstance;

winclass.hIcon         = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_ICON_LRG));

winclass.hCursor       = LoadCursor(NULL, IDC_ARROW);

winclass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);

winclass.lpszMenuName  = NULL;
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winclass.lpszClassName = g_szWindowClassName;

winclass.hIconSm       = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_ICON_SM));

MAKEINTRESOURCE is a Windows-defined
macro that takes an integer and converts
it into something meaningful to the
windows resource management func-
tions. If you take a peek at the
resource.h file that Developer Studio
generated when you created your re-
source script for the icons, you will see
that IDI_ICON_LRG and IDI_ICON_SM are
#defined as integers.

The sample project file Resources_Icons demonstrates how to use icons as resources.

Cursors
You create cursors the same way you create icons. They are usually 32×32, but can
go as big as 64×64 and are saved with the .cur file extension. You will often use a
custom cursor in your games to represent a crosshair, a hand, a spell, and so on.

In addition to drawing the cursor, you
must specify a hotspot—the location of
the cursor’s active area. This is set relative
to the upper-left corner (0, 0). In Devel-
oper Studio, you can set the hotspot by
clicking on the hotspot button and then
clicking on the area you want active.

The Resources_Cursors project file shows
how to create and display a simple bulls-
eye type cursor. It looks like Figure 2.15.

NOTE
You can also load in icon resources
as strings defined in the rc script file,
but there’s no real obvious benefit
to doing this. So, I’d recommend
sticking with integer IDs because
that’s the way Developer Studio is
set up to automatically create them.

Figure 2.15

A simple custom cursor.

TIP
If you require a cursor that changes
according to what it’s hovering over,
you will need to create all the cur-
sors you require, and then intercept
the WM_SETCURSOR message in your
window procedure and set the cursor
accordingly. You can change the
cursor using the SetCursor function of
the Windows API.

Using Resources
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Menus
Adding a menu to your program window is almost as easy as adding a cursor or an
icon. The menu you create is normally attached to the menu bar, which appears
under the title bar of your window.

To create your menu using Developer Studio, select Insert, Resource, Menu, and
you’ll get something that looks like Figure 2.16.

Figure 2.16

Menu creation screen.

Most menus consist of a row of captions, such as File, View, and Help, and a series
of options under each header. To create a caption, double-click in the first gray
rectangle and an option box will pop up. Type in the caption you require and close
the box. You will notice that a second rectangle appeared below the first; this is
where you put your menu options, such as Save or Load. Type in another caption
and then give this caption a unique identifier—one that’s easy to remember. If the
caption is Save, then a good identifier would be IDSAVE. See Figure 2.17.

Figure 2.17

Menu properties.

Keep doing this—adding captions and identifiers—until you have created your
desired menu, and then save it as a resource script just like you did when you
created the icons and cursor. The menu will be assigned a default name, such as
IDR_MENU1 but you can give it any name you like.
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You then attach your menu to your window class by adding this line to your definition:

winclass.lpszMenuName  = MAKEINTRESOURCE(IDR_MENU1);

and Hey Presto! You get something that looks like Figure 2.18.

Adding Functionality to Your Menu
Although you now have a visible menu, it’s useless because—although it promises
much—it doesn’t actually do anything—a bit like a politician. What I need to show
you now is how to link up the menu with your code so that it does what you want.

As you may have guessed, when a user
clicks on one of your menu captions, a
message is sent to the WindowProc. The
message you need to intercept is
WM_COMMAND, and for this message, the
lParam contains the handle of the parent
window sending the message, and the
wParam contains the ID of the menu item
clicked on. So, within the WindowProc, you
need to create a case statement for
WM_COMMAND, and then switch on the wParam
and create case statements based around
the menu selections you have created.

Figure 2.18

A simple menu.

TIP
If you use Developer Studio and you
have Spy++ installed, you can use it
to see all the messages being gener-
ated and put on the queue when
your application is running. It’s
incredible just how many messages
get generated, especially when you
move your mouse! You can find it
under Tools on the main Developer
Studio menu bar. This can be an
extremely useful tool at times so it’s
worth spending some time learning
how to use it correctly.

Using Resources
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Let’s take a look at the relevant section of the WindowProc in the excitingly named
example—Resources_Menus. All this example does is create a menu that allows you
play one of two different sound files.

case WM_COMMAND:

       {

         switch(wParam)

         {

         case IDSAVE:

           {

             //do your saving here

           }

           break;

         case IDLOAD:

           {

             //do your loading here

           }

           break;

         case IDSOUND1:

           {

             PlaySound("wav1.wav", NULL, SND_FILENAME | SND_ASYNC);

           }

           break;

         case IDSOUND2:

           {

              PlaySound("wav2.wav", NULL, SND_FILENAME | SND_ASYNC);

           }

           break;

         }// end switch WM_COMMAND

       }

       break;

Easy, right? And that’s all there is to creating a simple menu. Of course, there are
myriads of options for creating all sorts of weird and wonderful menus, but I’ll leave
you to consult the documentation if you want to experiment further.
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Dialog Boxes
There are two types of dialog boxes: modal and modeless.

Modal is the type you see most often—it requires the user to click on a button or
give some input before it gives control back to its parent window. About dialog
boxes are an example of the modal type, as is the Find and Replace dialog box in
Developer Studio.

Modeless is a type of dialog box that can be present and yet still allow the user to
interact with its parent window. You see this type of dialog box much less frequently.
The Find and Replace option in WordPad is an example of this type.

I will not be using modeless dialog boxes in any of my code samples so I’m not
going to cover them here, but I will give you an introduction to the modal variety.

A dialog box is another window without all the frills. They usually have no title bar, no
client area, and no minimize/maximize button, but they do have a windows proce-
dure just like the main window so they are able to process messages. To create a
dialog box, you must make a dialog template. Although these can be created by hand,
it’s a laborious task and much better suited to using your IDE’s resource editor.

To create a dialog template in Developer Studio, use the Insert, Resource, Dialog
Box option, and you’ll get the editor screen, as shown in Figure 2.19.

A Simple Dialog Box
First, I’m going to show you how to create a simple About dialog box to add to
the previous code sample. The source for this sample can be found in the
Resources_Dialog_Box1 folder.

Figure 2.19

Creating a dialog box.

Dialog Boxes
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All you need for this type of dialog box is a title, some informative text, and an OK
button to click to return back to the application. The default dialog template that
pops up in the editor has extraneous features, such as a Cancel button and a title
bar that you don’t want. To dispose of the Cancel button, click on the button, and
when a frame appears around it, press delete. Now double-click on the title bar and
a property box will appear, as shown in Figure 2.20.

Click on the Styles tab, and then uncheck the tick box for the title bar. Also note
that the dialog box has been assigned a default ID, usually IDD_DIALOG1, and the ID
for the OK button has been assigned IDOK. You can leave these as they are or change
them to something you are more comfortable with. I tend to use the defaults.

All you have to do now is add some text and move the OK button to somewhere
more pleasing. To move buttons around, click and drag. To add your text, there are
three buttons on the tool bar that are associated with text controls. You just need
the static text button for now. You are only adding text to be read by the user and not
manipulated (like an edit box). To add text, click on the static text button, then
click where you want the text, and a text box will appear. Double-click the text box
and a properties box will appear. Enter the text you want to appear in here, and
select how you want it displayed using the options in the Styles tab. I would recom-
mend having a separate static text box for each line of text because it’s much easier
to manipulate. By now you have produced something that looks like Figure 2.21.

Figure 2.20

Dialog box properties.

Figure 2.21

An About dialog box.
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Once you have defined the dialog template, you need to create a dialog box proce-
dure so it can process messages. This is what the dialog box procedure looks like for
the Resources_Dialog_Box1 example:

BOOL CALLBACK DialogProc(HWND   hwnd,

                         UINT   msg,

                         WPARAM wParam,

                         LPARAM lParam)

{

  switch(msg)

  {

  case WM_INITDIALOG:

    {

      return true;

    }

    break;

  case WM_COMMAND:

    {

      switch(LOWORD(wParam))

      {

      case IDOK:

        {

          EndDialog(hwnd, 0);

          return true;

        }

        break;

      }

    }

    break;

  }//end switch

  return false;

}

Dialog Boxes
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As you can see, a dialog box procedure looks very similar to a windows procedure,
but it has a few important differences. First, it returns a BOOL not an LRESULT. Second,
it does not have a DefWindowProc to take care of unhandled messages. The DialogProc
simply returns false for any unhandled messages sent to it. And third, there is no
need to process WM_PAINT, WM_DESTROY, or WM_CREATE messages.

WM_INITDIALOG is the first message the DialogProc will receive when it is invoked. If the
response to this message is true, Windows will put the focus on the first appropriate
child control—in this example, the OK button.

The only other message you have to handle is WM_COMMAND. A WM_COMMAND message is
sent to the DialogProc when the user pushes the OK button. The ID of the button,
IDOK, is stored in the low word of wParam so test for this and call the function
EndDialog if appropriate. EndDialog is a simple function that tells Windows to destroy
the dialog box.

So… you’ve created a dialog template and a DialogProc, all you have to do now is
add some code to invoke the dialog box if the user clicks About on the menu. If you
examine the resource script with the sample code, you will see I’ve added an About
menu box with an ID of IDABOUT. So, test for that message within the WM_COMMAND of
your WindowProc as you have tested for all the other menu IDs, and invoke the dialog
box appropriately. This is done by calling the function DialogBox.

int DialogBox(

  HINSTANCE hInstance,    // handle to application instance

  LPCTSTR   lpTemplate,   // dialog box template ID

  HWND      hWndParent,   // handle to owner window

  DLGPROC   lpDialogFunc  // pointer to dialog box procedure

);

As you can see, this is pretty straightforward. The only problem is you need an
hInstance for your main window to pass to DialogBox as one of the parameters. To do
that, I’ve just created a static HINSTANCE at the beginning of WindowProc and grabbed
the hInstance in WM_CREATE using the line of code:

hInstance = ((LPCREATESTRUCT)lParam)->hInstance;

Now that you have the hInstance, the dialog box can be invoked using:

DialogBox(hInstance,

          MAKEINTRESOURCE(IDD_DIALOG1),

          hwnd,

          DialogProc);

And that’s all there is to creating a simple dialog box.
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Now for Something More Useful
Unfortunately, the dialog box in the preceding example is useless. What you most
often require is a dialog box that enables the user to change your program’s param-
eters in some way. So that’s what I’m going to show you how to do now. The source
code for the following can be found in the Resources_Dialog_box2 folder on the CD.

You are going to modify the bouncing ball program so the user may change the
number and the radius of the balls. To do that, you need to create a simple dialog
box with two edit boxes. One for the number of balls and the other for the ball
radius. Something, in fact, that looks just like Figure 2.22. To make life easier, I’ve
created three global variables at the beginning of main.h. Two store the ball radius
and the number of balls—g_iNumBalls and g_iBallRadius—and the other keeps a
global record of the main window handle, g_hwnd. You’ll need all these global vari-
ables in your new dialog box procedure. Please note that these variables do not
have to be global; it’s just a quick fix for the purposes of this example.

You create this dialog box just like you made the dialog box in the preceding
example, only this time you add a couple of edit boxes with captions. The edit box
identities are IDC_EDIT1 and IDC_EDIT2. Once the dialog box template is ready, you
need to code a dialog box procedure. This will be different from the dialog box
procedure you created previously because this time it has to display the value of the
user-changeable parameters within the edit boxes. Also, when the OK button is
pressed, it has to check to see if any of those parameters have been altered by the
user, and update accordingly. Let’s take a close look at the new dialog procedure
and see what’s changed.

BOOL CALLBACK OptionsDialogProc(HWND   hwnd,

                                UINT   msg,

Figure 2.22

Dialog box with edit controls.

Dialog Boxes
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                                WPARAM wParam,

                                LPARAM lParam)

{

  //get handles to edit controls

  HWND hwndNumBalls = GetDlgItem(hwnd, IDC_EDIT1);

  HWND hwndRadius   = GetDlgItem(hwnd, IDC_EDIT2);

The first thing to do is make a note of the handles of the edit controls so you can
reference them later. GetDlgItem is a simple function, which given the handle to a
dialog box and a control identifier will return a handle to that control.

  switch(msg)

  {

  case WM_INITDIALOG:

    {

      //we have to update the edit boxes with the current radius

      //and number of balls

      string s = itos(g_iNumBalls);

      SetWindowText(hwndNumBalls, s.c_str());

      s = itos(g_iBallRadius);

      SetWindowText(hwndRadius, s.c_str());

      return true;

    }

    break;

When the dialog box is invoked, you want the current values for the ball radius
(g_iBallRadius) and number of balls (g_iNumBalls) to appear in the edit controls. To
do this, you have to change the appropriate parameter into text and then use the
SetWindowText function to position it in the correct edit box. The ints are changed
into std::strings in this example using the handy itos function defined in utils.h.

  case WM_COMMAND:

    {

      switch(LOWORD(wParam))

      {

      case IDOK:

        {

          //for each edit box we collect the information and then change

          //the parameters accordingly
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          char  buffer[5];

          //----------first the number of balls

          GetWindowText(hwndNumBalls, buffer, 5);

          //convert to an int

          g_iNumBalls = atoi(buffer);

          //----------Now the radius

          GetWindowText(hwndRadius, buffer, 5);

          //convert to an int

          g_iBallRadius = atoi(buffer);

If the user clicks OK, you need to retrieve whatever is in the text boxes and update
the parameters accordingly. Note that there is no error checking in this example.
When you create your own dialog boxes, make sure you check for errors or you’ll
rapidly end up in trouble (although I’m sure I don’t really need to tell you that!).

To retrieve the text from an edit control, use the function GetWindowText. Here’s what
the prototype of GetWindowText looks like:

int GetWindowText(

  HWND   hWnd,        // handle to window or control with text

  LPTSTR lpString,    // pointer to buffer for text

  int    nMaxCount    // maximum number of characters to copy

);

As you can see, you just give this function the handle to the edit control, a buffer to
store the text in, and the number of characters you want to retrieve. If the function
succeeds, the return value is the length of the copied string, not including the
terminating null character. Once you have retrieved the text, you just use atoi to
convert the characters into an integer.

          //send a custom message to the WindowProc so that

          //new balls are spawned

          PostMessage(g_hwnd, UM_SPAWN_NEW, NULL, NULL);

          //kill the dialog box

          EndDialog(hwnd, 0);

          return true;

Dialog Boxes
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        }

        break;

      }

    }

    break;

 }//end switch

 return false;

}

Now you have your new values for g_iNumBalls and g_iBallRadius. Before you kill the
dialog box, you need to let the program know the updated values so a new array of
balls can be created. To do that, put a custom-defined message in the message
queue and write a case statement in the WindowProc to handle it. To create user-
defined messages, you just define them like so:

#define UM_CUSTOM_MESSAGE1 (WM_USER + 0)

#define UM_CUSTOM_MESSAGE2 (WM_USER + 1)

#define UM_CUSTOM_MESSAGE3 (WM_USER + 2)

For this example, you only need one custom message, which I’ve called UM_SPAWN_NEW.
To send the message to the message queue, you can either use SendMessage or
PostMessage. SendMessage sends the message straight to the windows procedure with-
out going on the queue, and PostMessage simply puts it on the queue where it waits
its turn to be processed. I’ve used PostMessage in this example. The prototype looks
like this:

BOOL PostMessage(

  HWND   hWnd,    // handle of destination window

  UINT   Msg,     // message to post

  WPARAM wParam,  // first message parameter

  LPARAM lParam   // second message parameter

);

This is fairly straightforward. Just give
the function the handle to the main
window, g_hwnd, our custom message,
UM_SPAWN_NEW, and set the last two param-
eters to NULL. The UM_SPAWN_NEW message
will then be placed in the queue, and
the dialog box procedure kills the dialog
box and exits.

TIP
Although I’ve used global variables
to keep track of the ball informa-
tion, it is possible to use the wParam
and lParam fields in PostMessage and
SendMessage to pass information to
the WindowProc.
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For the sake of completeness, here’s the UM_SPAWN_NEW case statement from the
WindowProc:

    case UM_SPAWN_NEW:

      {

        //create a new array of balls of the required size

        if (balls)

        {

          delete balls;

        }

        //create the array of balls

         balls = new SBall[g_iNumBalls];

         //set up the balls with random positions and velocities

         for (int i=0; i<g_iNumBalls; ++i)

         {

           balls[i].posX = RandInt(0, cxClient);

           balls[i].posY = RandInt(0, cyClient);

           balls[i].velX = RandInt(0, MAX_VELOCITY);

           balls[i].velY = RandInt(0, MAX_VELOCITY);

         }

      }

      break;

As you can see, this just deletes the old array of balls and creates a new one of the
required size.

And that’s it, mission accomplished. You should now be able to create a dialog box
that enables the user to change your program’s parameters.

Getting the Timing Right
I just want to cover one last thing with you before I move onto genetic algorithms:
Timing.

When you code a game, you want it to work at the same speed on all different
machines. Imagine if you code a Pac-Man game and the characters move around
fine on your computer, but when you try it on your dad’s old 486, the poor old
Pac-Men jerk around the screen at three frames a second and then, even worse,

Getting the Timing Right
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when you upgrade to a new turbo charged AMD K15 TXL with a Geforce 9, the
ghosts move so fast, they are just a blur! In effect, your game would be useless. What
you need is a way of keeping the frame rate the same on any machine, and the way
you do that is by making use of the Window’s timer.

The timer class I use throughout this book is contained in the CTimer.h and
CTimer.cpp files. I’m not going to go into the inner workings of this class because I
don’t think it’s relevant—but I am going to show you how to use it. I’ve created a
version of the Bouncing Balls program, which uses a timer, and you can find it in
the Chapter2/Bouncing Balls with Timer folder on the CD.

If you examine the code in main.cpp, you’ll see I’ve made it very easy to use a timer.
Here is the relevant section of code:

//create a timer

CTimer timer(FRAMES_PER_SECOND);

First of all, you just create an instance of a timer and specify how many frames per
second you want the timer to run at. I usually #define FRAMES_PER_SECOND in defines.h

//start the timer

timer.Start();

Then, just before you enter your main loop, you call Start to start the timer.

MSG msg;

while(!bDone)

{

   while( PeekMessage( &msg, NULL, 0, 0, PM_REMOVE ) )

   {

      if( msg.message == WM_QUIT )

      {

         // Stop loop if it's a quit message

         bDone = true;

      }

      else

     {

        TranslateMessage( &msg );

        DispatchMessage( &msg );

     }

   }

   if (timer.ReadyForNextFrame())
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Now all you have to do is ask the timer if it’s time to process the next frame or not.
You do that by querying the ReadyForNextFrame method, which returns true if it is
time to process the next frame and false if otherwise.

   {

      //**any game update code goes in here**

      //this will call WM_PAINT which will render our scene

      InvalidateRect(hWnd, NULL, TRUE);

      UpdateWindow(hWnd);

   }

}//end while

Creating and using a timer is as easy as that!

At Last!
Wow! Chapter complete! You’ve covered a lot of ground in this chapter, but by now
you should be able to understand any of the Windows-relevant code that appears in
the projects for the remainder of this book.

Now, go make yourself a strong cup of coffee, and let’s get on with the AI.

At Last!

Team LRN



This page intentionally left blank 

Team LRN



Part Two

Genetic
Algorithms

Team LRN



CHAPTER 3

AN INTRODUCTION TO GENETIC ALGORITHMS ............ 89

CHAPTER 4

PERMUTATION ENCODING AND
THE TRAVELING SALESMAN PROBLEM ............................ 117

CHAPTER 5

BUILDING A BETTER GENETIC ALGORITHM .................. 143

CHAPTER 6

MOON LANDINGS MADE EASY .......................................... 177

Team LRN



CHAPTER 3

An
Introduction

to Genetic
Algorithms

Team LRN
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One day a group of eminent scientists got together and decided that Man had come a
long way and no longer needed God. So they picked one scientist to go and tell Him that
they were done with Him.

The scientist walked up to God and said, “God, we’ve decided that we no longer need
You. We’re to the point that we can clone people and do many miraculous things, so why
don’t You just retire?”

God listened very patiently to the man and then said, “Very well, but first, how about
this, let’s have a Man-making contest.”

To which the scientist replied, “Okay, great!”

But God added, “Now, we’re going to do this just like I did back in the old days with Adam.”

The scientist said, “Sure, no problem” and bent down and grabbed himself a handful of dirt.

God just looked at him and said, “No, no, no—You go get your own dirt!”

The Birds and the Bees
In the same way that creatures evolve over many generations to become more
successful at the tasks of survival and reproduction, genetic algorithms grow and
evolve over time to converge upon a solution, or solutions, to particular types of
problems. Therefore, to understand how a genetic algorithm works, it helps to
know a little about how living organisms evolve. I’ll be spending the first few pages
outlining the mechanisms of nature (what evolutionary algorithm people like to call
“wet” evolution) and the terminology that goes with it. Don’t worry if you were
never comfortable with biology in school; I will not be going into a great amount of
detail—just enough to help you understand the basic mechanisms. And besides, by
the time you’ve finished a chapter or two, I reckon you’ll be finding Mother Nature
just as fascinating as I do!

All living organisms are essentially a large collection of cells. Each cell contains the
same set of strings of DNA, called chromosomes. The DNA a chromosome contains is
double–stranded, and the strands are connected to each other in a spiraling braid,
which is the familiar DNA helix shape shown in Figure 3.1.
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Individual chromosomes are built from smaller building blocks, called genes, which
in turn are comprised of substances called nucleotides. There are only four types of
nucleotides: thymine, adenine, cytosine, and guanine. They are often shortened to
T, A, C, and G (I wonder why… <smile>). These nucleotides are linked together
into long chains of genes, and each gene encodes a certain trait of the organism,
such as hair color or ear shape. The different settings a gene may possess—for
example, brown, blonde, or black hair color—are called alleles, and their physical
position along the length of the chromosome is called their locus.

Interesting Note
The alleles needn’t just be the settings for physical characteristics; some will give rise
to behavior patterns, such as the homing behavior of birds or salmon and the instinct
of a mother’s young to suckle.

The collection of chromosomes within a cell holds all the information necessary to
reproduce that organism. This is how cloning works—you can copy an organism, such
as a sheep, from the information contained in just one blood cell of a donor sheep.
The new sheep will be identical in every respect to the donor sheep. This collection of
chromosomes is known as the organism’s genome. The state of the alleles in a particu-
lar genome is known as that organism’s genotype. These are the hard-coded instruc-
tions that give rise to the actual organism itself, which is called the phenotype. You and I
are phenotypes. Our DNA carries our genotype. To put it another way, the blueprint
and specifications for a car design is a genotype, whereas the finished car rumbling
off the production line is a phenotype. Just the plain old design, before the car

Figure 3.1

The amazing double helix of life.
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specifications have been finalized, could be loosely called a genome.

Okay, that’s enough jargon for the moment. Now let’s talk about how all this applies
to evolution. If you’re the type of person who occasionally gets outside and away
from a computer screen (I only know there’s an outside because my friends tell me
so), you would have noticed that the world is home to a whole bunch of creatures
and plants—millions of them—and all different sizes, shapes, and colors. From
microscopic single-celled organisms to the Great Barrier Reef—the only life form
on earth visible from space. An organism is considered successful if it mates and
gives birth to child organisms, which, hopefully, will go on to reproduce themselves.
To do this, the organism must be good at many tasks, such as finding food and
water, defending itself against predators, and making itself attractive to potential
mates. All these attributes are dependent in some way upon the genotype of the
organism—the creature’s blueprint. Some of the organism’s genes will give rise to
attributes that will aid it in becoming successful, and some of its genes may hinder
it. The measure of success of an organism is called its fitness. The more fit the
organism is, the more likely it is to produce offspring. Now for the magic part…

When two organisms mate and reproduce, their chromosomes are mixed together
to create an entirely new set of chromosomes, which consists of genes from both
parents. This process is called recombination or crossover. This could mean that the
offspring inherits mainly the good genes, in which case it may go on to be even
more successful than its parents (for example, it has better defense mechanisms
against predators), or it may inherit mainly the bad genes, in which case it may not
even be able to reproduce. The important thing to note is that the more fit the
offspring are, the more likely they will go on to reproduce and pass on their own
genes to their offspring. Each generation, therefore, will show a tendency to be
better at survival and mating than the last. As a quick and very simple example of
this, imagine female creatures that are only attracted to males with large eyes.
Basically, the larger the eyes, the greater the likelihood that a male creature is going
to be successful at “wooing” the females. You could say that the fitness of a creature
is proportional to the diameter of its eyes. So, if you start off with a population of
these male creatures, all of whom display different eye sizes, you can see that the
gene in the male creature that is set to build a larger eye when the animal is devel-
oping, is more likely to be copied to the next generation than when that gene’s
allele is set to develop a small eye. It follows, therefore, that after many generations,
larger eyes are going to be dominant in the male population. You can say that, over
time, the creatures are converging toward a particular genotype.
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Figure 3.2

An experiment in information transference. (Figure from Illusions by Thames and Hudson.)

The Birds and the Bees
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However, some of you may have realized that if this was the only thing going on
during reproduction, even after many thousands of generations, the eye size of the
fittest member can only be as large as the largest eye in the initial population. Just
from observing nature, you can see that trends such as eye size actually change from
generation to generation. This happens because when the genes are passed on to the
offspring, there is a very small probability that an error may occur and the genes may
be slightly changed. It’s a bit like the old game of Chinese Whispers, in which a
message is passed down a line of people. The first person whispers a phrase into the
ear of the second person and so on, until the last person in line speaks the message
he heard. Usually, to much amusement, the final message will be nothing like the
original. These types of errors occur in just about any sort of information passed from
one system to the next. An amazing example of this is the drawings shown in Figure
3.2. These are the results of a test in which a drawing of a bird (far left) was passed to
the next person to be copied, and then that copy was passed to the next person, until
the remarkable transformation shown at the end was reached. If you are ever in a
gathering of fifteen friends or so, I’d highly recommend doing this little exercise,
because it seems incredible that the initial drawing can change so much.

Interesting Fact
Even ancient coins were prone to this type of information loss. Early Celtic and
Teutonic coins were counterfeited profusely, and an original coin that had the face of
an emperor on it could be found—by the time it had reached outlaying towns and
cities—to have changed into the shape of a horse or a bowl of fruit. You didn’t need
high-tech ultraviolet-detection devices to spot a counterfeit in those days!

You could say that the sentence or drawing has mutated from person to person, and
the same sort of mutation can occur to genes during the reproduction process. The
probability of a mutation occurring is very small, but nevertheless it is significant
over a large enough number of generations. Some mutations will be disadvanta-
geous (probably most), some will do nothing to effect the creature’s fitness, but
some will give the creature a distinct advantage over other creatures of its type. In
the preceding example, you can see that any mutation that occurs in a creature’s
genes, which gives rise to a larger diameter eye, is going to make that creature stand
out like a Vogue supermodel compared to the rest of the population. Therefore,
the trend will be toward genes that are responsible for larger and larger eyes. After
thousands of generations, this process of evolution may produce eyes as big as
dinner plates! See Figure 3.3.
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In addition to being able to alter an existing feature, the mechanisms of evolution
can give birth to completely new features. Let’s take the evolution of the eye as
an example…

Imagine a time when the creatures didn’t have eyes at all. In those days, the crea-
tures navigated their environment and avoided their predators entirely by smell and
touch. And they were pretty good at it too, because they had been doing just fine
for thousands of generations—in those days, males with big noses and hands were
popular with the girls. Then one day, when two of the creatures mated, a mutation
occurred in the genes that provide the blueprint for skin cells. This mutation gave
rise to offspring that developed a skin cell on their head, which was ever so slightly
light-sensitive—just enough so that the offspring could tell whether it was light or
dark in their environment. Now, this gave them a slight advantage, because if a
predator—an eagle for example—got within a certain range, it would block out the
light, and the creatures would know to run for cover. Also, the skin cell would
indicate whether it was night or day, or whether they were overground or under-
ground, which may give them an advantage in hunting and feeding. You can see
that this new type of skin cell gave the creatures a slight advantage over the rest of
the population and, therefore, a better probability of surviving and reproducing.
Over time, because of the mechanisms of evolution, more creatures will possess
chromosomes that include the gene for the light-sensitive skin cell.

Now, if you extrapolate this a little and imagine further advantageous mutations to
the same skin cell gene, you can see how, over many generations, the area of light
sensitivity may grow larger and obtain features that give better definition, such as a
lens and additional cells to detect color. Imagine a mutation that would provide the
creature with not just one of these areas of light sensitivity, but two, and therefore,
gift the creature with stereo vision. Stereo vision is a huge step forward for an organ-
ism, because now it can tell exactly how far away objects are. Of course, you may
also get mutations to those same genes, which give rise to features detrimental to
the eye, but the important point here is that those creatures will not be as successful
as their cousins with the new and improved eyes, and therefore, they will eventually

Figure 3.3

The evolution of an
Adonis.

The Birds and the Bees

Team LRN



96 3. An Introduction to Genetic Algorithms

die out. Only the more successful genes will be inherited. You can observe any
feature in nature and see how it may have evolved using a myriad of tiny little
mutations, all of which are advantageous to its owner. Incredible, isn’t it?

So, these mechanisms of recombination and mutation illustrate how evolution
works, and I hope you now understand how organisms can develop different types
of features to help them be more successful within their environment.

A Quick Lesson in Binary Numbers
Before you go any further, I need to make sure you understand the binary number
system. If you already know how binary numbers work, skip this little section. If you
don’t, let me enlighten you…

I think the easiest way to learn about binary numbers (or base 2) is to first examine
how and why you count in decimal (base 10).

It’s commonly accepted that humans count using base 10 because we have ten digits
on our hands. Imagine one of our ancestors, let’s call him Ug, hundreds of thou-
sands of years ago counting the number of mammoths in a herd. Ug starts to count
by making two fists, then for every mammoth he sees, he extends a digit. He contin-
ues doing this until all his fingers and thumbs have been used; then he knows he
has counted ten mammoths. However, the herd contains far more than ten mam-
moths, so Ug has to think of a way to count higher. He scratches his head, has an
idea, and calls his friend, Frak, over. Ug realized that by using Frak’s thumb to
represent the ten mammoths he just counted, frees up his fingers and thumbs to
start the process all over again—to count eleven, twelve, thirteen, and so on, all the
way up to twenty when another of Frak’s digits is required. As you can see, Ug and
Frak can count up to 110 mammoths using this process (that would be a terrific
sight, don’t you think?), but to count any higher, they would need to recruit yet
another friend.

When humans eventually worked out how to write down numbers, they did it in a
similar way. To represent base 10 numbers, you create a series of columns, each of
which basically represents a person’s pair of hands, just like this:

1000’s 100’s 10’s units
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So, to count to 15, you increase the units column until you reach 9, and then because
you cannot count any higher using this column, you increment the 10s column and
start all over again from zero in the units column, until you end up with:

1000’s 100’s 10’s units

1 5

The number fifteen is made up of one ten and five units. (I know this is probably
sounding really obvious to you, but this detailed analysis is necessary.) You see, the
binary number system (or any other number system for that matter) works in the
same way. But instead of having ten digits to count with, you only have one! So,
when you write down numbers in Base 2, the columns (in binary they are known as
bits) represent numbers like this.

16’s 8,s 4,s 2’s units

Now you will count to 15. First, you increment the units column.

16’s 8,s 4,s 2’s units

1

Now, because you cannot count any higher than this (you only have one digit,
remember), you have to increment the column to the left to continue, so the
number 2 looks like this:

16’s 8,s 4,s 2’s units

1 0

The number 3 looks like this:

16’s 8,s 4,s 2’s units

1 1

A Quick Lesson in Binary Numbers
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The number 4 looks like this:

16’s 8,s 4,s 2’s units

1 0 0

and so on until you reach 15.

16’s 8,s 4,s 2’s units

1 1 1 1

And that’s all there is to it. By now, you should be able to convert from decimal to
binary or vice versa. I should also point out that binary numbers are often a set
number of bits, especially when you talk about them in relation to computers.
That’s why processors are described as being 8-, 16-, 32-, or 64-bit. This means that if
you are representing the number 15 in 8-bit binary, you would write it like this:

00001111

As an exercise, just to make sure you understand this concept, try to answer the
following questions before you move on to the next section (the answers are at the
end of this chapter):

1. Convert 27 from decimal to binary.

2. Convert the binary number 10101 into decimal.

3. Represent the decimal number 135 as an 8-bit binary number.

Easy, eh? Now that you have an elementary idea of binary numbers, let’s get on with
the more exciting stuff…

Evolution Inside Your Computer
The way genetic algorithms work is essentially mimicking evolution. First, you figure
out a way of encoding any potential solution to your problem as a “digital” chromo-
some. Then, you create a start population of random chromosomes (each one
representing a different candidate solution) and evolve them over time by “breed-
ing” the fittest individuals and adding a little mutation here and there. With a bit of
luck, over many generations, the genetic algorithm will converge upon a solution.
Genetic algorithms do not guarantee a solution, nor do they guarantee to find the
best solution, but if utilized the correct way, you will generally be able to code a
genetic algorithm that will perform well. The best thing about genetic algorithms is
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that you do not need to know how to solve a problem; you only need to know how to
encode it in a way the genetic algorithm mechanism can utilize.

Typically, the chromosomes are encoded as a series of binary bits. At the start of a
run, you create a population of chromosomes, and each chromosome has its bits set
at random. The length of the chromosome is usually fixed for the entire popula-
tion. As an example, this is what a chromosome of length twenty may look like:

01010010100101001111

The important thing is that each chromosome is encoded in such a way that the
string of bits may be decoded to represent a solution to the problem at hand. It may be
a very poor solution, or it may be a perfect solution, but every single chromosome
represents a possible solution (more on the encoding in a moment). Usually the
starting population is terrible, a little like the English cricket team or an American
playing football (sorry, soccer). Anyway, like I said, an initial population of random
bits is created (let’s say one hundred for this example), and then you do this (don’t
worry about the italicized phrases. I’ll be explaining each one in just a moment):

Loop until a solution is found:

1. Test each chromosome to see how good it is at solving the problem and
assign a fitness score accordingly.

2. Select two members from the current population. The probability of being
selected is proportional to the chromosome’s fitness—the higher the fitness,
the better the probability of being selected. A common method for this is
called Roulette wheel selection.

3. Dependent on the Crossover Rate, crossover the bits from each chosen chro-
mosome at a randomly chosen point.

4. Step through the chosen chromosome’s bits and flip dependent on the
Mutation Rate.

5. Repeat steps 2, 3, and 4 until a new population of one hundred members has
been created.

End loop

Each loop through the algorithm is called a generation (steps 1 through 5). I call the
entire loop an epoch and will be referring to it as such in my text and code.

What’s Roulette Wheel Selection?
Roulette wheel selection is a method of choosing members from the population of
chromosomes in a way that is proportional to their fitness—for example, the fitter

Evolution Inside Your Computer
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the chromosome, the more probability it has of being selected. It does not guaran-
tee that the fittest member goes through to the next generation, merely that it has a
very good probability of doing so. It works like this:

Imagine that the population’s total fitness score is represented by a pie chart, or
roulette wheel (see Figure 3.4). Now, you assign a slice of the wheel to each mem-
ber of the population. The size of the slice is proportional to that chromosome’s
fitness score—the fitter a member is, the bigger the slice of pie it gets. Now, to
choose a chromosome, all you have to do is spin the wheel, toss in the ball, and grab
the chromosome that the ball stops on. I’ll be showing you the exact algorithm for
coding this a little later in the chapter.

Figure 3.4

Roulette wheel selection of chromosomes.

What’s the Crossover Rate?
The crossover rate is simply the probability that two chosen chromosomes will swap
their bits to produce two new offspring. Experimentation has shown that a good
value for this is typically around 0.7, although some problem domains may require
much higher or lower values.

Every time you choose two chromosomes from the population, you test to see if they
will crossover bits by generating a random number between 0 and 1. If the number
is lower than the crossover rate (0.7), then you choose a random position along the
length of the chromosome and swap all the bits after that point.

For example, given two chromosomes:

10001001110010010

01010001001000011

you choose a random position along the length, say 10, and swap all the bits to the
right of that point accordingly.
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So the chromosomes become (I’ve left a space at the crossover point):

100010011 01000011

010100010 10010010

What’s the Mutation Rate?
The mutation rate is the probability that a bit within a chromosome will be flipped (a
0 becomes 1, and a 1 becomes 0). This is usually a very low value for binary encoded
genes, for example 0.001.

So, whenever you choose chromosomes from the population, you first check for
crossover, and then you move through each bit of the offspring’s chromosomes and
test to see if it needs to be mutated.

Phew!
Don’t worry if some of that was meaningless! Most of what you read from now until
the end of the chapter is designed for you to read through twice. There are so many
new concepts for you to understand, and they are all intermingled with each other. I
believe this is the best way for you to learn. The first time you read through, you’ll
hopefully get a feel for the basic concepts, but the second time (if I’ve done my job
correctly), you’ll begin to see how the different ideas link together. When you finally
start to play with the code, everything
should slot into place nicely, and then it’s
only a matter of refining your knowledge
and skills (that’s the easy part).

And the best way for you to understand
these new concepts is to throw yourself
in at the deep end and start coding a
simple genetic algorithm. Sound good?
Okay, here’s what you are going to do:

Helping Bob
Home
Because path-finding seems to be one of
the Holy Grails of game AI, you are
going to create a genetic algorithm to

NOTE
You can find the source code for the
pathfinder project in the Chapter3/
Pathfinder folder on the accompany-
ing CD-ROM.

If you feel like taking a quick peek
before you read any further, there is
a ready-made executable,
‘pathfinder.exe’, in the Chapter3/
Executable folder.

(All the code and executables for
each chapter are stored under
their relevant folders on the CD in
this way).

Helping Bob Home
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solve a very simple path-finding scenario. You will set up a maze that has an en-
trance at one end, an exit at the other, and some obstacles scattered about. Then
you are going to position a virtual man, let’s call him Bob, at the start and evolve a
path for him that takes him to the exit and manages to avoid all the obstacles. I’ll
show you how to encode Bob’s chromosomes in a second, but first I need to tell you
how you are going to represent the maze…

The maze is a 2D array of integers; a 0 will represent open space, a 1 will represent a
wall or an obstacle, a 5 will be the start point, and an 8 will be the exit. So, the
integer array

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,

8, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,

1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1,

1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1,

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,

1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 5,

1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

will look a little like Figure 3.5 when on the screen:

Figure 3.5

Bob’s Maze. The entrance and exit are clearly
marked in red. Eat your heart out, Carmack!

I’ve encapsulated this map concept in a class called CBobsMap. It is defined as:

class CBobsMap

{

private:
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  //storage for the map

  static const int  map[MAP_HEIGHT][MAP_WIDTH];

  static const int  m_iMapWidth;

  static const int  m_iMapHeight;

  //index into the array which is the start point

  static const int  m_iStartX;

  static const int  m_iStartY;

  //and the finish point

  static const int  m_iEndX;

  static const int  m_iEndY;

public:

  //you can use this array as Bobs memory if rqd

  int  memory[MAP_HEIGHT][MAP_WIDTH];

  CBobsMap()

  {

    ResetMemory();

  }

  //takes a string of directions and see's how far Bob

  //can get. Returns a fitness score proportional to the

  //distance reached from the exit.

  double TestRoute(const vector<int> &vecPath, CBobsMap &memory);

  //given a surface to draw on this function uses the windows GDI

  //to display the map.

  void Render(const int cxClient, const int cyClient, HDC surface);

  //draws whatever path may be stored in the memory

  void MemoryRender(const int cxClient, const int cyClient, HDC surface);

  void ResetMemory();

};

Helping Bob Home
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As you can see, you simply store the map array as a constant, along with the start
and end points. These values are defined in CBobsMap.cpp, which you can find in
the relevant folder on the CD. In addition to storing the maze, this map class is also
used to record Bob’s progress through the maze in the array: memory[][]. This is not
essential for the genetic algorithm itself, but a record is required for display pur-
poses, so you can see where Bob wanders. The important member function here is
TestRoute(), which takes a series of directions and tests them to see how far Bob can
travel. I’ll not waste the planet’s trees by listing the TestRoute() function here,
because it’s one of those functions that is very simple, but would probably be a
couple of pages long to list. It is suffice to say that, given a vector of directions—
representing North, South, East, and West—TestRoute calculates the farthest posi-
tion in the map Bob can reach and then returns a fitness score proportional to
Bob’s final distance from the exit. The closer to the exit he gets, the higher the
fitness score he is rewarded. If he actually reaches the exit, Bob gets a pat on the
back and receives the maximum (in this example) fitness score of one, and the loop
automatically exits because you have found a solution. Hurrah!

Again, do not worry about understanding every aspect of this class immediately.
Everything will start to click shortly.

Encoding the Chromosome
Each chromosome must be encoded to represent the movement of our little man,
Bob. Bob’s movement is restricted to four directions: North, South, East, and West,
so the encoded chromosomes should be strings of information representing these
four directions. The traditional method of encoding is changing the directions into
binary code. Only two bits are necessary to represent four directions, as denoted by

Code Decoded Direction

00 0 North

01 1 South

10 2 East

11 3 West

Therefore, if you take a random string of bits, you can decode them into a series of
directions for Bob to follow. For example the chromosome:

111110011011101110010101

represents the genes
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11, 11, 10, 01, 10, 11, 10, 11, 10, 01, 01, 01

that when decoded from binary to decimal become

3, 3, 2, 1, 2, 3, 2, 3, 2, 1, 1, 1

And again, in table form, just to make sure you are at one with this idea:

Code Decoded Direction

11 3 West

11 3 West

10 2 East

01 1 South

10 2 East

11 3 West

10 2 East

11 3 West

10 2 East

01 1 South

01 1 South

01 1 South

Now, all you have to do is place Bob at the start and tell him to follow those direc-
tions. If a direction makes Bob bump into a wall, that instruction is simply ignored
and the program moves on to the next instruction. This continues until either the
vector of directions is exhausted or Bob reaches the exit. If you imagine a collection
of hundreds of these random chromosomes, you can see how some of them may
decode to give a set of directions which would allow Bob to reach the exit (a solu-
tion), but most of them will fail. The genetic algorithm takes an initial population of
random bit strings (the chromosomes), tests each one to see how close it lets Bob get
to the exit, then breeds the better ones in hopes of creating offspring that will let Bob
get a little bit closer to the exit. This continues until a solution is found or until Bob
becomes hopelessly stuck in a corner (which can and will happen, as you will see).

So, a structure must be defined that holds a string of bits (the chromosome) and a
fitness score associated with that chromosome. I call this the SGenome structure, and
it’s defined like this:

struct SGenome

{

Helping Bob Home
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  vector<int> vecBits;

  double      dFitness;

  SGenome():dFitness(0){}

  SGenome(const int num_bits):dFitness(0)

  {

    //create a random bit string

    for (int i=0; i<num_bits; ++i)

    {

      vecBits.push_back(RandInt(0, 1));

    }

  }

};

As you can see, if you create a SGenome object by passing the constructor an int as a
parameter, it automatically creates a random bit string of that length, initializes the
fitness to zero, and the genome is all primed to go.

Programming Note
std::vector is part of the STL (standard template library) and is a ready-made class
for handling dynamic arrays. Elements are added to it by using the method
push_back(). Here is a simple example:

#include<vector>

std::vector<int> MyFirstVector;

for (int i=0; i< 10; i++)

{

  MyFirstVector.push_back(i);

  cout << endl << MyFirstVector[i];

}

To empty a vector, use the clear() method.

MyFirstVector.clear();

You can get the number of elements in a vector using the size() method.

MyFirstVector.size()

That’s it. No need to worry about memory management—std::vector does it all for
you! I will be using it throughout the program, when appropriate.
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The SGenome structure has no knowledge of how the chromosome (vecBits) should
be decoded; that is a task for the genetic algorithm class itself. Let’s take a quick
peek at the definition of that class now. I’ve named it CgaBob (sometimes I surprise
myself with my originality, I really do).

class CgaBob

{

private:

  //the population of genomes

  vector<SGenome> m_vecGenomes;

  //size of population

  int             m_iPopSize;

  double          m_dCrossoverRate;

  double          m_dMutationRate;

  //how many bits per chromosome

  int             m_iChromoLength;

  //how many bits per gene

  int             m_iGeneLength;

  int             m_iFittestGenome;

  double          m_dBestFitnessScore;

  double          m_dTotalFitnessScore;

  int             m_iGeneration;

  //create an instance of the map class

  CBobsMap        m_BobsMap;

  // another CBobsMap object is used to keep a record of

  //the best route each generation as an array of visited

  //cells. This is only used for display purposes.

Helping Bob Home
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  CBobsMap       m_BobsBrain;

  //lets you know if the current run is in progress.

  bool           m_bBusy;

  void        Mutate(vector<int> &vecBits);

  void        Crossover(const vector<int> &mum,

                        const vector<int> &dad,

                        vector<int>       &baby1,

                        vector<int>       &baby2);

  SGenome&    RouletteWheelSelection();

  //updates the genomes fitness with the new fitness scores and calculates

  //the highest fitness and the fittest member of the population.

  void        UpdateFitnessScores();

  //decodes a vector of bits into a vector of directions (ints)

  vector<int> Decode(const vector<int> &bits);

  //converts a vector of bits into decimal. Used by Decode.

  int         BinToInt(const vector<int> &v);

  //creates a start population of random bit strings

  void        CreateStartPopulation();

public:

  CgaBob(double cross_rat,

         double mut_rat,

         int    pop_size,

         int    num_bits,

         int    gene_len):m_dCrossoverRate(cross_rat),

                          m_dMutationRate(mut_rat),

                          m_iPopSize(pop_size),

                          m_iChromoLength(num_bits),

                          m_dTotalFitnessScore(0.0),
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                          m_iGeneration(0),

                          m_iGeneLength(gene_len),

                          m_bBusy(false)

  {

    CreateStartPopulation();

  }

  void  Run(HWND hwnd);

  void  Epoch();

  void  Render(int cxClient, int cyClient, HDC surface);

  //accessor methods

  int   Generation(){return m_iGeneration;}

  int   GetFittest(){return m_iFittestGenome;}

  bool  Started(){return m_bBusy;}

  void  Stop(){m_bBusy = false;}

};

As you can see, when an instance of this class is created, the constructor initializes
all the variables and calls CreateStartPopulation(). This little function sets up a
population of the required amount of genomes. Each genome, don’t forget, ini-
tially starts off containing a chromosome comprised of random bits and a fitness
score set to zero.

Epoch
The meat and bones of your genetic algorithm class is the Epoch() method. This is
the genetic algorithm loop that I described earlier in the chapter and is the work-
horse of the class. This one method more or less ties everything together. Let’s take
a close look at it then…

void CgaBob::Epoch()

{

  UpdateFitnessScores();

The first thing done each epoch is to test the fitness scores of each member of the
population. UpdateFitnessScores is a function that decodes the binary chromosome
of each genome and sends the decoded series of directions (comprised of integers
representing north, south, east, and west) to CBobsMap::TestRoute. This, in turn,

Helping Bob Home
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checks how far Bob traverses through the map and returns a fitness score propor-
tional to his finished distance from the exit. Let me quickly talk you through the
few lines of source that calculate Bob’s fitness:

Int DiffX = abs(posX - m_iEndX);

int DiffY = abs(posY - m_iEndY);

DiffX and DiffY simply hold the number of cells Bob is offset horizontally and
vertically from the exit. Take a look at Figure 3.6. The gray cells represent Bob’s
route through the maze, and the cell with B on it is where he finally ends up. At this
position DiffX =3 and DiffY = 0.

Figure 3.6

Bob attempts to find the exit.

return 1/(double)(DiffX+DiffY+1);

This next line calculates the fitness score by adding these two figures together and
calculating the inverse. One is added to the sum of DiffX and DiffY to make sure we
don’t get a divide by zero error if Bob reaches the exit when DiffX + DiffY = 0.

UpdateFitnessScores also keeps track of the fittest genome of each generation and
the total combined fitness of all the genomes. These values are used when perform-
ing Roulette Wheel Selection. Now that you’ve learned what UpdateFitnessScores()
does, let’s get back to the Epoch function…

Because a new population of genomes is created each epoch, we need to find
somewhere to put them as they are created (two at a time).

  //Now to create a new population

  int NewBabies = 0;

  //create some storage for the baby genomes

  vector<SGenome> vecBabyGenomes;
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Now to move on to the business of the genetic algorithm loop.

  while (NewBabies < m_iPopSize)

  {

    //select 2 parents

    SGenome mum = RouletteWheelSelection();

    SGenome dad = RouletteWheelSelection();

Each iteration, two genomes are selected to be the parents of two new baby chromo-
somes. I like to call them mum and dad (because that’s what they will be). If you recall,
the fitter a genome is, the better probability it will have of being selected to become
a parent by the Roulette Wheel Selection method.

    //operator - crossover

    SGenome baby1, baby2;

    Crossover(mum.vecBits, dad.vecBits, baby1.vecBits, baby2.vecBits);

Two blank genomes are created—these are the babies—and are passed, along with
the selected parents, to the Crossover function. This function performs crossover
(dependent on the m_dCrossoverRate variable) and stores the new chromosome bit
strings in baby1 and baby2.

    //operator - mutate

    Mutate(baby1.vecBits);

    Mutate(baby2.vecBits);

Next, the babies are mutated! Sounds horrible, but it’s good for them. The prob-
ability that a baby’s bits are mutated is dependent on the m_dMutationRate variable.

    //add to new population

    vecBabyGenomes.push_back(baby1);

    vecBabyGenomes.push_back(baby2);

    NewBabies += 2;

  }

These two new offspring are finally added to the new population, and that’s one
completed iteration of the loop. This process is repeated until an amount of off-
spring has been created that is equal to the size of the start population.

  //copy babies back into starter population

  m_vecGenomes = vecBabyGenomes;

  //increment the generation counter

Helping Bob Home
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  ++m_iGeneration;

}

Here the old population is replaced with the new offspring and a counter is
incremented to keep track of the current generation. And that’s it. Easy, eh?

This Epoch function is repeated endlessly, until the chromosomes converge upon a
solution or until the user decides to stop. I’ll show you the code for each of the
operators in a moment, but first let’s have a chat about determining what param-
eters you should use.

Choosing the Parameter Values
I put all the parameters used in the code in the file defines.h. Most of these will be
self–explanatory, but there are a few I’d like to discuss, namely

#define CROSSOVER_RATE  0.7

#define MUTATION_RATE  0.001

#define POP_SIZE       140

#define CHROMO_LENGTH  70

You may wonder how I know what variables to use. And that’s the million dollar
question, because there are no hard and fast rules for determining these values,
only guidelines. In the end, choosing these values comes down to obtaining a “feel”
for genetic algorithms, and you’ll only get that by coding your own and playing
around with the parameters to see what happens. Different problems need different
values, but generally speaking, if you are using a binary-encoded chromosome, the
values of 0.7 for the crossover rate and 0.001 for the mutation rate are good defaults
with which to start. A useful rule for your population size is to have roughly twice as
many genomes as the length of your chromosome.

I have chosen the chromosome length of 70 here because 70 represents a possible
maximum of 35 moves, which is more than adequate for Bob to traverse the map
and find the exit. As you learn techniques in later chapters to make your genetic
algorithms more efficient, you will be able to reduce that length.

Historical Note
Genetic algorithms are the brain child of John Holland, who came up with the idea in
the early 60s. Incredibly, he didn’t feel the need to actually try them out on a computer
and instead preferred to tinker about with a pen and paper! It was only when a
student of his wrote a program that ran on a home personal computer that the world
finally saw what could be achieved by implementing his ideas in software.
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The Operator Functions
I’ll now go through the code for each of the genetic operator functions—selection,
crossover, and mutation. Although simple, going through the code with you gives
you the opportunity to review these functions. You will be getting to know them
intimately as you progress with your knowledge of genetic algorithms.

Roulette Wheel Selection Revisited
Let’s start with Roulette wheel selection. Remember, this function chooses a ge-
nome from the population using a probability proportional to its fitness.

SGenome& CgaBob::RouletteWheelSelection()

{

  double fSlice = RandFloat() * m_dTotalFitnessScore;

First, a random number is chosen between zero and the total fitness score. I like to
think that this number represents a slice in the pie of all the fitness scores, as shown
earlier in Figure 3.4.

  double cfTotal        = 0;

  int    SelectedGenome = 0;

  for (int i=0; i<m_iPopSize; ++i)

  {

    cfTotal += m_vecGenomes[i].dFitness;

    if (cfTotal > fSlice)

    {

      SelectedGenome = i;

      break;

    }

  }

  return m_vecGenomes[SelectedGenome];

}

Now, the code iterates through the genomes adding up the fitness scores as it goes.
When this subtotal is greater than the fSlice value, it returns the genome at that
point. It’s as simple as that.
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Crossover Revisited
Here a function is required that splits the chromosomes at a random point and then
swaps all the bits after that point to create two new chromosomes (the offspring).

void CgaBob::Crossover( const vector<int> &mum,

                        const vector<int> &dad,

                        vector<int>       &baby1,

                        vector<int>       &baby2)

{

This function is passed references to two parent chromosomes (don’t forget a
chromosome is just a std::vector of integers) and two empty vectors into which the
offspring are copied.

  if ( (RandFloat() > m_dCrossoverRate) || (mum == dad))

  {

    baby1 = mum;

    baby2 = dad;

    return;

  }

First, a check is made to see if crossover is going to be performed on the two par-
ents, mum and dad. The probability of crossover occurring is based on the parameter
m_dCrossoverRate. If no crossover is to occur, the parents’ chromosomes are copied
straight into the offspring without alteration and the function returns.

  int cp = RandInt(0, m_iChromoLength - 1);

A random point is chosen along the length of the chromosome to split the chromosomes.

  for (int i=0; i<cp; i++)

  {

    baby1.push_back(mum[i]);

    baby2.push_back(dad[i]);

  }

  for (i=cp; i<mum.size(); i++)

  {

    baby1.push_back(dad[i]);

    baby2.push_back(mum[i]);

  }

}
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These two little loops swap the bits of each parent after the crossover point (cp) and
assign the new chromosomes to the children: baby1 and baby2.

Mutation Revisited
This function simply travels down the length of a chromosome and flips its bits with
a probability dependent on m_dMutationRate.

void CgaBob::Mutate(vector<int> &vecBits)

{

  for (int curBit=0; curBit<vecBits.size(); curBit++)

  {

    //flip this bit?

    if (RandFloat() < m_dMutationRate)

    {

      //flip the bit

      vecBits[curBit] = !vecBits[curBit];

    }

  }//next bit

}

And that’s it. Your first genetic algorithm is complete! Now let me take a moment to
explain what you will see when you run the Pathfinder program.

Running the Pathfinder Program
When you run the Pathfinder program, you will see that the program does not find a
path to the exit every time. Sometimes Bob gets stuck, wobbling about uncertainly
like a drunken man trying to find his way home. This is mainly due to the population
converging upon one particular type of chromosome too quickly. Therefore, because
the population becomes so similar, the beneficial effects of the crossover operator are
practically erased, and all that is happening is a small amount of mutation every now
and then. Because the mutation rate is set so low, mutation itself is not enough to find
a solution once the diversity of chromosome types is lost. Also, because of the way
Roulette wheel selection works, the fittest chromosome in any given generation is not
guaranteed to pass to the next generation. This means the genetic algorithm may find
a population member that is almost a perfect solution, only to kill it off more or less
instantly, and in doing so, lose all the good genes it possesses! In later chapters, I’ll be
addressing these problems and describing techniques that will help maintain diversity
while retaining the fitter genomes. First, though, I want to spend some time looking
at different encoding techniques and how they relate to different types of problems
you may encounter. That’s what we’ll be doing in the next chapter.
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ANSWERS TO BINARY NUMBER QUESTIONS (from page 98)

1. 11011

2. 21

3. 10000111

Stuff to Try
At the end of every chapter from this point on, I’m going to give you some ideas to
play around with. I cannot stress how important it is to tinker with code. It’s the
only way you will develop that magical “feel” for these algorithms. And, when you
start to do complicated stuff, that “feel” gets mighty important.

1. Experiment with different parameters for crossover rate, mutation rate,
population size, and chromosome length. Observe how they affect the effi-
ciency of the algorithm.

2. Try turning off the crossover operator and increasing the mutation rate. What
happens? What happens if you just use crossover with no mutation?

3. Alter the fitness function so that chromosomes that step into the same cell
more than once are penalized. This should result in more efficient paths to
the exit.

4. What else could you do to make the path more efficient?
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118 4. Permutation Encoding and the Traveling Salesman Problem

A traveling salesman came upon an old farmer sitting on his porch. Next to the farmer
was a pig with only one leg. The salesman was about to give his sales pitch when his
curiosity got the best of him.

“Excuse me sir, but why does your pig only have one leg?” asked the salesman.

“Well, sonny, I’ll tell ya. One day I was out plowing the back 40 when my tractor over-
turned, pinning me underneath. I was losing blood and thought I would die when that
pig came running. He dug and rooted around with his nose till he got me out and he
dragged me back to the house—md]saved my life that pig did.”

“Wow, that’s really amazing,” said the salesman,” but I still don’t know why the pig only
has one leg.”

“Well, sonny, when you get a pig that smart, you don’t want to eat him all at once!”

N ow that you understand the basics of genetic algorithms, I’ll spend this
chapter looking at a completely different way of encoding genetic algorithms

that solve problems involving permutations. A good example of this is a famous
problem called “The Traveling Salesman Problem.”

The Traveling Salesman Problem
Given a collection of cities, the traveling salesman must determine the shortest route that
will enable him to visit each city precisely once and then return back to his starting point.
See Figure 4.1.

Figure 4.1

A simple eight-city Traveling Salesman Problem (TSP).
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119The Traveling Salesman Problem

This problem is usually abbreviated to the TSP, which saves a lot of typing! It is a
deceptively simple problem and is part of the set of what mathematicians call NP-
Complete problems. It’s not necessary to go into exactly what NP-Complete means
here (it would involve a lot of mathematics for a start!), but basically, the difficulty is
that as more cities are added, the computational power required to solve the prob-
lem increases exponentially. This means that an algorithm implemented on a
computer that solves the TSP for fifty cities would require an increase in computer
power of a thousand fold just to add an additional ten cities! You can see how the
same algorithm would quickly reach the limits of any available hardware.

This type of problem frequently occurs when coding the AI for strategy games.
Often it’s necessary to create the shortest path for a unit that will start at one
waypoint, end at another, and pass through several predefined areas along the way,
to pick up resources, food, energy, and so on. It can also be used as part of the
route planning AI for a Quake-like FPS bot. Obviously, a genetic algorithm cannot
easily (on today’s PCs) be run in real time to solve this type of problem, but it can
be an invaluable tool to use either offline in the development phases of your AI, or
if you have some sort of random map/level generation, it may even be used be-
tween levels in the map-creation code.

One of the great things about tackling the TSP during your learning curve—and
the main reason I’m devoting over a chapter to it—is that it’s a fantastic way of
witnessing how making changes to your code can affect the results. Often, when
coding genetic algorithms, it’s not easy to visualize what effect a different mutation
or crossover operator is having on your algorithm, or how a particular optimization
technique is performing, but the TSP provides you with great visual feedback, as
you shall see.

Table 4.1 shows some of the landmarks in TSP solving, starting from the 1950s.

As you’ll discover when you start tinkering with your own genetic algorithms,
finding a solution for over 15,000 cities is quite an achievement! You will be starting
modestly, though. Twenty or so cities should be plenty for your first outing and is
typically the amount of waypoints you would be using for a unit in a game. Al-
though, trying to get your algorithm to perform well on larger numbers of cities can
get addictive!

Traps to Avoid
At this point, it may be a good idea for you to make coffee, sit back, close your eyes,
and spend a few minutes thinking about how you might tackle this problem…
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120 4. Permutation Encoding and the Traveling Salesman Problem

As you may have realized, you can’t take the same approach that you did in Chap-
ter 3, “An Introduction to Genetic Algorithms.” The main difference with the TSP
is that solutions rely on permutations, and therefore, you have to make sure that
all your genomes represent a valid permutation of the problem—a valid tour of all
the cities. If you were to represent possible solutions using the binary encoding
and crossover operator from the Pathfinder problem presented in Chapter 3, you
can see how you would run into difficulties very quickly. Take the eight city ex-
ample, shown in Figure 4.1. You could encode each city as a 3-bit binary number,
numbering the cities from 0 to 7. So, if you had two possible tours, you could
encode them like this:

Possible Tour Binary Encoded Tour

3, 4, 0, 7, 2, 5, 1, 6 011 100 000 111 010 101 001 110

2, 5, 0, 3, 6, 1, 4, 7 010 101 000 011 110 001 100 111

Now, choose a crossover point (represented by an x) after the fourth city, and see
what offspring you get.

Table 4.1 Landmarks in TSP Problem Solving

Year Researcher/s Number of cities

1954 Dantzig, Fulkerson, and Johnson 49

1971 Held and Karp 64

1975 Camerini, Fratta, and Maffioli 100

1977 Grötschel 120

1980 Crowder and Padberg 318

1987 Padberg and Rinaldi 532

1987 Grötschel and Holland 666

1987 Padberg and Rinaldi 2392

1994 Applegate, Bixby, Cook, and Chvátal 7397

1998 Applegate, Bixby, Cook, and Chvátal 13509

2001 Applegate, Bixby, Cook, and Chvátal 15112
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Before Crossover

Binary Encoded Tour Decoded Tour

Parent 1 011 100 000 111  x  010 101 001 110 3, 4, 0, 7, 2, 5, 1, 6

Parent 2 010 101 000 011  x  110 001 100 111 2, 5, 0, 3, 6, 1, 4, 7

After Crossover

Binary Encoded Tour Decoded Tour

Child 1 011 100 000 111  x  110 001 100 111 3, 4, 0, 7, 6, 1, 4, 7

Child 2 010 101 000 011  x  110 001 100 111 2, 5, 0, 3, 2, 5, 1, 6

You can see the results of this crossover operation in Figure 4.2. You can see that
there is a major problem! Both of the offspring have produced tours that contain
duplicate cities, which of course means they are invalid.

To get this to work, you would have to code some hideous error-checking function to
remove all the duplicates, which would probably lead to the destruction of any improve-
ment gained up to that point in the tour. So, in the quest for a solution, a different type
of crossover operator needs to be invented that only spawns valid offspring. Also, can
you imagine what the previous mutation operator would do with this type of encoding?
That’s right, duplicate tours again. So, you also need to think about how you might
implement a new type of mutation operator. Before you go any further though, doesn’t
binary encoding seem rather inelegant to you in the context of this problem? A better
idea would be to use integers to represent each city. This, as you will see, will make life a
lot easier all around. So, to clarify, the tour for parent one, shown in the preceding
table, would be simply represented as a vector of integers:

3, 4, 0, 7, 6, 1, 4, 7

Figure 4.2

Invalid offspring.

The Traveling Salesman Problem
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122 4. Permutation Encoding and the Traveling Salesman Problem

You will save a lot of computer time if you do it this way, because you don’t have to
waste processor cycles decoding and encoding the solutions back and forth from
binary notation.

The CmapTSP, SGenome, and CgaTSP
Declarations
Before I go on to describe the operators in detail, let’s take a quick look at the
header files for the TSP genetic algorithm program. The source code for this
example is found in the appropriate folder on the accompanying CD. (I guess
you’ve already figured that out though, eh?)

CmapTSP
To encapsulate the map data, the city coordinates, and the fitness calculations, I’ve
created a class, CmapTSP, which is defined as follows (I shall comment further where
necessary, but most of the definitions are self explanatory):

class CmapTSP

{

private:

  vector<CoOrd>  m_vecCityCoOrds;

A CoOrd is a simple structure defined to hold the x and y coordinates of each city. It
looks like this:

struct CoOrd

{

  float x, y;

  CoOrd(){}

  CoOrd(float a, float b):x(a),y(b){}

};

Continuing with CmapTSP:

  //number of cities in our map

  int     m_NumCities;

  //client window dimensions

  int     m_MapWidth;
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  int     m_MapHeight;

  //holds the length of the solution, if one is calculable.

  double m_dBestPossibleRoute;

  void       CreateCitiesCircular();

CreateCitiesCircular is a function that creates m_NumCities amount of cities in a
circular pattern. I’ve coded it this way because it’s easy to determine the best path
(to check the genetic algorithm solution against) as well as being a great way of
visualizing the genetic algorithm in progress. See Figure 4.3.

  double     CalculateA_to_B(const CoOrd &city1, const CoOrd &city2);

This method simply calculates the distance between two cities using Pythagoras’s
famous equation “Given a right-angled triangle, the square of the hypotenuse is equal to the
sum of the squares of the other two sides.” See Figure 4.4.

Figure 4.3

The circular city arrangement.

Figure 4.4

The sides of a right-angled triangle.

The Traveling Salesman Problem
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124 4. Permutation Encoding and the Traveling Salesman Problem

  void      CalculateBestPossibleRoute();

This function calculates the best possible route for a circular arrangement of cities.
Because they are arranged in a circle, this is trivial to calculate. The shortest route is
the one that connects all the cities together in a circular chain, as shown in Figure 4.5.

So, CalculateBestPossibleRoute simply calls CMapTSP::CalculateA_to_B for each pair of cities
as it steps around the circle and returns the sum of all the distances between them.

public:

  CmapTSP(int w, int h, int nc):m_MapWidth(w),

                                m_MapHeight(h),

                                m_NumCities(nc)

  {

    //calculate the co-ordinates for the cities

    CreateCitiesCircular();

    CalculateBestPossibleRoute();

  }

When an instance of this class is created, the coordinates of the required number of
cities are created and the best possible tour is calculated. The city coordinates are
stored in m_vecCityCoOrds.

  //used if user changes the client window dimensions

  void   Refresh(const int new_width, const int new_height);

  double GetTourLength(const vector<int> &route);

Figure 4.5

A last! A task where running around in circles is to be desired!
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Given a valid tour of cities, GetTourLength returns the total distance traveled. This is
the workhorse of the fitness function.

  //accessor methods

  double         BestPossibleRoute(){return m_dBestPossibleRoute;}

  vector<CoOrd>  CityCoOrds(){return m_vecCityCoOrds;}

};

Figure 4.6 shows a screenshot of the program after the genetic algorithm has
completed a successful run and found the optimum route between the cities. If you
would like to run the program before you go any further, you can find a pre-com-
piled executable under the relevant chapter heading on the CD.

SGenome
The genome structure is defined as:

struct SGenome

{

  //the city tour (the chromosome)

  vector<int>    vecCities;

  double         dFitness;

  //ctor

Figure 4.6

Success!

The Traveling Salesman Problem
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126 4. Permutation Encoding and the Traveling Salesman Problem

  SGenome():dFitness(0){}

  SGenome(int nc): dFitness(0)

  {

     vecCities = GrabPermutation(nc);

  }

  //creates a random tour of the cities

  vector<int>   GrabPermutation( int &limit);

  //used in GrabPermutation

  bool          TestNumber(const vector<int> &vec, const int &number);

  //overload '<' used for sorting

  friend bool operator<(const SGenome& lhs, const SGenome& rhs)

  {

     return (lhs.dFitness < rhs.dFitness);

  }

};

The genome will consist of a candidate tour stored in a std::vector of integers,
vecCities, and a fitness score, dFitness.

When an SGenome object is created by passing the constructor an integer (n) repre-
senting the number of cities in the tour, the method GrabPermutation is called. This
creates a random permutation of the series 0,1, . . .n and stores it in vecCities.
The genome is then ready and primed to add to the population. The
GrabPermutation function code looks like this:

vector<int> SGenome::GrabPermutation(int &limit)

{

  vector<int> vecPerm;

  for (int i=0; i<limit; i++)

  {

     //we use limit-1 because we want ints numbered from zero

     int NextPossibleNumber = RandInt(0, limit-1);

     while(TestNumber(vecPerm, NextPossibleNumber))

     {

       NextPossibleNumber = RandInt(0, limit-1);
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     }

     vecPerm.push_back(NextPossibleNumber);

  }

  return vecPerm;

}

CgaTSP
This is the declaration of the genetic algorithm class. Most of the member variables
should be self-explanatory. I’ll describe the member functions in more detail in the
next section.

class CgaTSP

{

private:

  //the population of genomes

  vector<SGenome>  m_vecPopulation;

  //instance of the map class

  CmapTSP*      m_Map;

  double        m_dMutationRate;

  double        m_dCrossoverRate;

  //total fitness of the entire population

  double        m_dTotalFitness;

  //the shortest tour found so far

  double        m_dShortestRoute;

  //the worst tour found so far

  double        m_dLongestRoute;

  //number of genomes in the population

  int            m_iPopSize;

  //length of chromosome

The Traveling Salesman Problem
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128 4. Permutation Encoding and the Traveling Salesman Problem

  int            m_iChromoLength;

  //the fittest member of the most recent generation

  int            m_iFittestGenome;

  //keeps track of which generation we are in

  int            m_iGeneration;

  //lets us know if the current run is in progress

  //used in the rendering function

  bool          m_bStarted;

  //Exchange Mutation

  void          MutateEM(vector<int> &chromo);

  //Partially Matched Crossover

  void          CrossoverPMX(const vector<int> &mum,

                             const vector<int> &dad,

                             vector<int>       &baby1,

                             vector<int>       &baby2);

  SGenome&      RouletteWheelSelection();

  void          CalculatePopulationsFitness();

  void          Epoch();

  void          Reset();

  void          CreateStartingPopulation();

public:

  //ctor

  CgaTSP(double  mut_rat,

         double  cross_rat,

         int     pop_size,

         int     NumCities,

         int     map_width,
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         int     map_height):m_dMutationRate(mut_rat),

                             m_dCrossoverRate(cross_rat),

                             m_iPopSize(pop_size),

                             m_iFittestGenome(0),

                             m_iGeneration(0),

                             m_dShortestRoute(999999999),

                             m_dLongestRoute(0),

                             m_iChromoLength(NumCities),

                             m_bBusy(false)

  {

     //set up the map

     m_Map = new CmapTSP(map_width,

                         map_height,

                         NumCities);

     CreateStartingPopulation();

  }

  //dtor

  ~CgaTSP(){delete m_Map;}

  void        Run(HWND hwnd);

  //accessor methods

  void      Stop(){m_bStarted = false;}

  bool      Started(){return m_bStarted;} };

As before, a crossover operator, a mutation operator, and a fitness function need to
be defined. The most complex of these for the TSP is the crossover operator,
because, as discussed earlier, a crossover function must provide valid offspring. So,
I’ll wade in at the deep end and start with that…

The Permutation Crossover
Operator (PMX)
There are many solutions that provide valid offspring for a permutation-encoded
chromosome: Partially-Mapped Crossover, Order Crossover, Alternating-Position
Crossover, Maximal-Preservation Crossover, Position-Based Crossover, Edge-
Recombination Crossover, Subtour-Chunks Crossover, and Intersection Crossover

The Permutation Crossover Operator (PMX)
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to name just a few. In this chapter, I’ll be discussing one of the more popular cross-
over types: Partially-Mapped Crossover, or PMX as it’s more widely known. In the next
chapter, I’ll begin by giving descriptions of some of the alternatives, because it will be
good practice for you to experiment with different operators to see what effect they
may have on the efficiency of your genetic algorithm. But for now, let’s just use PMX.

So, assuming the eight city problem has been encoded using integers, two possible
parents may be:

Parent1:  2 . 5 . 0 . 3 . 6 . 1 .  4 . 7

Parent2:  3 . 4 . 0 . 7 . 2  . 5 . 1 . 6

To implement PMX, you must first choose two random crossover points—let’s say
after cities 3 and 6. So, the split is made at the x’s, like so:

Parent1:  2 . 5 . 0 . x 3 . 6 . 1    x . 4 . 7

Parent2:  3 . 4 . 0 . x 7 . 2 . 5    x .1 . 6

Then you look at the two center sections and make a note of the mapping between
parents. In this example:

3 is mapped to 7

6 is mapped to 2

1 is mapped to 5

Now, iterate through each parent’s genes and swap the genes wherever a gene is
found that matches one of those listed. Step by step it goes like this:

Step 1

Child1:  2 . 5 . 0 . 3 . 6 . 1 .  4 . 7

Child2:  3 . 4 . 0 . 7 . 2  . 5 . 1 . 6

(here the children are just direct
copies of their parents)
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Step 2 [3 and 7]

Child1:  2 . 5 . 0 . 7 . 6 . 1 .  4 . 3

Child2: 7 . 4 . 0 . 3 . 2  . 5 . 1 . 6

Interesting Fact
The first mention of the Traveling Salesman Problem came from a mathematician and
economist named Karl Menger in the 1920s, but became popular when a man named
Merill Flood started discussing it with colleagues at the RAND Corporation in the late
40s. This was a time when there was a lot of interest in combinatorial problems, and
mathematicians loved the TSP because it was so simple to describe, yet extremely
difficult to solve. Today it is still widely used as a test problem for new combinatorial
optimization methods.

Step 2 [6 and 2]

Child1: 6 . 5 . 0 . 7 . 2 . 1 .  4 . 3

Child2:  7 . 4 . 0 . 3 . 6  . 5 . 1 . 2

Step 3 [1 and 5]

Child1:  6 . 1 . 0 . 7 . 2 . 5 .  4 . 3

Child2:  7 . 4 . 0 . 3 . 6  . 1 . 5 . 2

Et Voilá! The genes have been crossed over and you have ended up with valid
permutations with no duplicates. This operator can be a little difficult to under-
stand at first, so it may be worth your while to read over the description again.

And then, when you think you’ve grasped the concept, try performing this crossover
yourself with pen and paper. Make sure you understand it completely before you go on.

The implementation of the Partially Matched Crossover operator looks like this:

void CgaTSP::CrossoverPMX(const vector<int> &mum,

                          const vector<int> &dad,

                          vector<int>       &baby1,

                          vector<int>       &baby2)

{

The Permutation Crossover Operator (PMX)
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  baby1 = mum;

  baby2 = dad;

  //just return dependent on the crossover rate or if the

  //chromosomes are the same.

  if ( (RandFloat() > m_dCrossoverRate) || (mum == dad))

  {

     return;

  }

  //first we choose a section of the chromosome

  int beg = RandInt(0, mum.size()-2);

  int end = beg;

  //find an end

  while (end <= beg)

 {

    end = RandInt(0, mum.size()-1);

 }

  //now we iterate through the matched pairs of genes from beg

  //to end swapping the places in each child

  for (int pos = beg; pos < end+1; ++pos)

  {

     //these are the genes we want to swap

     int gene1 = mum[pos];

     int gene2 = dad[pos];

     if (gene1 != gene2)

     {

       //find and swap them in baby1

       int posGene1 = *find(baby1.begin(), baby1.end(), gene1);

       int posGene2 = *find(baby1.begin(), baby1.end(), gene2);

       swap(posGene1, posGene2);

       //and in baby2
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       posGene1 = *find(baby2.begin(), baby2.end(), gene1);

       posGene2 = *find(baby2.begin(), baby2.end(), gene2);

       swap(posGene1, posGene2);

     }

   }//next pair

}

STL Note
find()

The find algorithm is defined in <algorithm> and may be used with any of the STL
container classes to search for a value. Its definition is

InputIterator find (InputIterator beg, InputIterator end, const T& value)

What’s an iterator you say? Well, simply put, you can think of an iterator as a pointer
to an element. You can increment an iterator just as you would a pointer, using ++, and
you can access the value of an iterator using *.An input iterator is a special type of
iterator that can only step forward element by element with read access. Therefore,
you pass the find algorithm two iterators defining the beginning and end of the search
range and the value you are searching for. The find algorithm returns an iterator
pointing to the first element it finds equal to the value. If no match is found, it returns
end().

begin() and end() are member functions of container classes that return iterators,
which represent the beginning and end of the elements in the container. end() returns
a position that is one after the last element in the container.

For example, if you have a std::vector of random integers, vector<int> vecInts, and
you want to search all its elements for the value 5, you must first create an iterator of
the correct type and then use find to retrieve the information:

vector<int>::iterator it;

it = find(vecInts.begin, vecInts.end(), 5);

swap()

swap is also defined in <algorithm> and is used to swap the elements of a container. It
is clearly defined as:

void swap(T& val1, T& val2);

The Permutation Crossover Operator (PMX)
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The Exchange Mutation
Operator (EM)
After PMX, this operator is a pushover! Remember, you have to provide an operator
that will always produce valid tours. The Exchange Mutation operator does this by
choosing two genes in a chromosome and swapping them. For example, given the
following chromosome:

5 . 3 . 2 . 1 . 7 . 4 . 0 . 6

The mutation function chooses two genes at random, for example 4 and 3, and
swaps them:

5 . 4 . 2 . 1 . 7 . 3 . 0 . 6

which results in another valid permutation. The code for the exchange mutation
operator looks like this.

void CgaTSP::MutateEM(vector<int> &chromo)

{

  //return dependent upon mutation rate

  if (RandFloat() > m_dMutationRate) return;

  //choose first gene

  int pos1 = RandInt(0, chromo.size()-1);

  //choose second

  int pos2 = pos1;

  while (pos1 == pos2)

  {

    pos2 = RandInt(0, chromo.size()-1);

  }

  //swap their positions

  swap(chromo[pos1], chromo[pos2]);

}
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Deciding on a Fitness Function
A fitness function, which gives an increasing score the lower the tour length, is
required. You could use the reciprocal of the tour length, but that doesn’t really
give much of a spread between the best and worst chromosomes in the population.
Therefore, when using fitness proportionate selection, it’s almost pot luck as to
whether the fitter genomes will be selected. See Table 4.2 for an example.

A better idea is to keep a record of the worst tour length each generation and then
iterate through the population again subtracting each genome’s tour distance from
the worst. This gives a little more spread, which will make the roulette wheel selec-
tion much more effective. It also effectively removes the worst chromosome from
the population, because it will have a fitness score of zero and, therefore, will never
get selected during the selection procedure. See Table 4.3

Table 4.2 TSP Tour Lengths and Their Fitness Scores

Genome Tour Length Fitness

1 3080 0.000324588

2 3770 0.000263786

3 3790 0.000263786

4 3545 0.000282029

5 3386 0.000295272

6 3604 0.000277406

7 3630 0.000275417

8 3704 0.00026993

9 2840 0.000352108

10 3651 0.000273854

Deciding on a Fitness Function
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This is what the final fitness function looks like:

void CgaTSP::CalculatePopulationsFitness()

{

  //for each chromo

  for (int i=0; i<m_iPopSize; ++i)

  {

    //calculate the tour length for each chromosome

    double TourLength =

    m_Map->GetTourLength(m_vecPopulation[i].vecCities);

    m_vecPopulation[i].dFitness = TourLength;

    //keep a track of the shortest route found each generation

    if (TourLength < m_dShortestRoute)

    {

      m_dShortestRoute = TourLength;

    }

    //keep a track of the worst tour each generation

Table 4.3 Adjusted Fitness Scores

Genome Tour Length Fitness

1 3080 710

2 3770 20

3 3790 0

4 3545 245

5 3386 404

6 3604 186

7 3630 160

8 3704 86

9 2840 950

10 3651 139
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    if (TourLength > m_dLongestRoute)

    {

      m_dLongestRoute = TourLength;

    }

  }//next chromo

  //Now we have calculated all the tour lengths we can assign

  //the fitness scores

  for (i=0; i<m_iPopSize; ++i)

  {

    m_vecPopulation[i].dFitness =

    m_dLongestRoute - m_vecPopulation[i].dFitness;

  }

}

Selection
Roulette wheel selection is going to be
used again—but this time with a differ-
ence. To help the genetic algorithm
converge more quickly, in each epoch
before the selection loop you are going
to guarantee that n instances of the
fittest genome from the previous genera-
tion will be copied unchanged into the
new population. This means that the
fittest genome will never be lost to
random chance. This technique is most
often referred to as elitism.

Putting It All
Together
This is the easy part. All you have to do
now is define a function or two to step
through the operators you have defined

TIP
Although elitism is a valuable tool
to have in your GA toolkit and is
generally a good idea to use—
beware. You can run into difficulties
when tackling some types of prob-
lems. Elitism may give your popula-
tion of genomes a tendency to
converge too quickly. In other words,
the population will become too
similar too soon and your GA will
find a non-optimal solution. A non-
optimal solution is usually referred
to as a local minima. Ideally, you have
to fine-tune a balancing act between
retaining population diversity and
cloning the best genomes from each
generation. I’ll be talking about this
in more detail in the next chapter.

Putting It All Together
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and keep track of the fittest members in the population. The main workhorse is our
old friend Epoch. It should look familiar to you:

void CgaTSP::Epoch()

{

  //first reset variables and calculate the fitness of each genome

  Reset();

  CalculatePopulationsFitness();

  //if a solution is found exit

  if ((m_dShortestRoute <= m_Map->BestPossibleRoute()))

  {

    m_bBusy = false;

    return;

  }

  //create a vector to hold the offspring

  vector<SGenome> vecNewPop;

  //First add NUM_BEST_TO_ADD number of the last generation's

  //fittest genome(elitism)

  for (int i=0; i<NUM_BEST_TO_ADD; ++i)

  {

    vecNewPop.push_back(m_vecPopulation[m_iFittestGenome]);

  }

  //now create the remainder of the population

  while (vecNewPop.size() != m_iPopSize)

  {

    //grab two parents

    SGenome mum = RouletteWheelSelection();

    SGenome dad = RouletteWheelSelection();

    //create 2 children

    SGenome baby1, baby2;

    //Recombine them

    CrossoverPMX(mum.vecCities,
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                 dad.vecCities,

                 baby1.vecCities,

                 baby2.vecCities);

    //and mutate them

    MutateEM(baby1.vecCities);

    MutateEM(baby2.vecCities);

    //add them to new population

    vecNewPop.push_back(baby1);

    vecNewPop.push_back(baby2);

  }

  //copy into next generation

  m_vecPopulation = vecNewPop;

  //increment generation counter

  ++m_iGeneration;

}

As you can see, this looks very similar to the Epoch function from the last chapter. The
only real difference is that this time, elitism is being added to the selection procedure.

The #defines
As before, the main parameters for the genetic algorithm are defined in defines.h,
like so:

#define WINDOW_WIDTH      500

#define WINDOW_HEIGHT     500

#define NUM_CITIES        20

#define CITY_SIZE         5

#define MUTATION_RATE     0.2

#define CROSSOVER_RATE    0.75

#define POP_SIZE          40

//must be a multiple of 2

#define NUM_BEST_TO_ADD   2

Putting It All Together
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140 4. Permutation Encoding and the Traveling Salesman Problem

This parameter is used to set the amount of elitism: the number of instances of the
fittest genome that get copied into the new population each generation.

//used to rectify precision errors

#define EPSILON           0.000001

Summary
When you run the program, you will notice that the genetic algorithm does not
converge on a solution every time; indeed, it gets “stuck” quite regularly. And this is
only with a few cities! If you play around with the code (which I hope you do) and
increase the number of cities, you will see just how poorly this example actually
performs. Often you will end up with the program stuck in a rut and a route look-
ing something like Figure 4.7.

TIP
Because of the number of floating point calculations
required to determine the tour distances, EPSILON needs to
be defined as a way of correcting any precision errors
incurred. For example, you perform a series of calculations
on some floats, and you know the answer should be X.
Often the answer will not be X; it will be slightly more or
less. Therefore, if you have a condition like

if (some_number == X)

{

  do something

}

it will be missed more often than not. So instead, do this

if ( (some_number > X-EPSILON) && (some_number <

X+EPSILON))

{

  do something

}

and everything is hunky-dory. This is a useful technique to use
whenever you deal with multiple floating point calculations.
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Fortunately, there are a multitude of things you can do to improve the efficiency of
a genetic algorithm, and I’ll be addressing those in the next chapter as well as
running through some of the other mutation and crossover operators that may be
utilized. By the time you’ve finished Chapter 5, “Building a Better Genetic Algo-
rithm,” your GAs will be running with all cylinders firing.

Stuff to Try
1. Change the selection operator to use a type of elitism that will copy the four

fittest genomes from the previous population directly into the new popula-
tion before the rest are chosen by roulette wheel selection. Does this make
the algorithm better or worse?

2. Change the fitness function to just use the reciprocal of the tour length and
see if it makes a difference.

3. Take elitism off altogether and see what happens when you increase the
number of cities from just a few (ten or so) to over 50.

Figure 4.7

Doh! The genetic algorithm fails to find the solution.

Stuff to Try
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144 5. Building a Better Genetic Algorithm

Programming today is a race between software engineers striving to build bigger and
better idiot-proof programs, and the Universe trying to produce bigger and better idiots.

So far, the Universe is winning.

Richard Cook

B y now, I hope you are starting to get a feel for the mechanism of genetic
algorithms. If not, review the last couple of chapters and play around with the

code some more. I cannot stress enough how important it is to play around with
code. It’s a bit like when you learned how to program. Remember those days?
Remember how much you learned through a hands-on approach, rather than just
sitting down with a heavy programming book? Well genetic algorithms (and neural
networks) are very much like that. You learn much faster by writing your own code
and experimenting with all the different parameters because you develop a feel for
what works and what doesn’t. This “feel” is very important because, to date, there
are few hard and fast rules about genetic algorithms—they are as much an art as
they are science. It’s only with time and experimentation that you will learn what
the right population size should be for a problem, just how high the mutation rate
should be set, and so on.

This chapter is all about experimentation. First, I want to get you used to looking at
operators and thinking about what changes you can make to improve them, and
then I’ll discuss some additional techniques that may improve the performance of
your genetic algorithm, such as various fitness scaling techniques. I say may improve
the performance of your genetic algorithm because every problem is different and
a technique that helps one problem may actually hinder another. After you’ve
tackled a few problems of your own, though, you’ll get to know pretty quickly which
techniques are appropriate for which problems. It’s all about that “feel” I men-
tioned earlier.

Just to see how much the techniques covered here are going to help solve the TSP
from the last chapter, check out the executable for this chapter on the CD (Figure
5.1 shows a screenshot). Big improvement, huh? Anyway, now I’ve given you a taste
for what’s to come; let’s get on with the theory.
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145Alternative Operators for the TSP

Alternative Operators for the TSP
The first topic I’m going to cover will be a discussion of those alternative mutation
and crossover operators for the traveling salesman problem. Although none of
them will improve the algorithm by a staggering amount, I feel I should spend a
little time going over the more common ones because it’s interesting to see how
many different ways there are of approaching the problem of retaining valid permu-
tations. Also, some of them give very interesting and thought provoking results
when you watch the TSP algorithm in progress. More importantly, though, it will
teach you that for every problem, there can be a multitude of ways to code the
operators. Again—and I know I keep saying this—please make sure you play around
with different operators to see how they perform. You will learn a lot. Hell, even go
one step further and try to invent your own operators! That might prove a little
tricky for the crossover operator for the TSP, but I bet you could think of a novel
mutation operator, at the very least.

Alternative Permutation Mutation
Operators
There have been many alternative mutation operators dreamed up by enthusiastic
genetic algorithm researchers for the TSP. Here are descriptions of a few of the best
followed by their code implementations.

Figure 5.1

The salesman gets smart.
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Scramble Mutation (SM)
Choose two random points and “scramble” the cities located between them.

0 .1 . 2 . 3 . 4 . 5 . 6 . 7

becomes

0 .1 . 2 . 5 . 6 . 3 . 4 . 7

Here’s what the code looks like.

void CgaTSP::MutateSM(vector<int> &chromo)

{

   //return dependent upon mutation rate

   if (RandFloat() > m_dMutationRate) return;

   //first we choose a section of the chromosome

   const int MinSpanSize = 3;

   //these will hold the beginning and end points of the span

   int beg, end;

   ChooseSection(beg, end, chromo.size()-1, MinSpanSize);

ChooseSection is a small function which determines a random start and end point to
a span given a minimum span size and maximum span size. Please see the source
code on the CD if further clarification is required.

   int span = end - beg;

   //now we just swap randomly chosen genes with the beg/end

   //range a few times to scramble them

   int NumberOfSwapsRqd = span;

   while(--NumberOfSwapsRqd)

   {

       vector<int>::iterator gene1 = chromo.begin();

       vector<int>::iterator gene2 = chromo.begin();

       //choose two loci within the range

       advance(gene1, beg + RandInt(0, span));
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       advance(gene2, beg + RandInt(0, span));

       //exchange them

       swap(*gene1, *gene2);

    }//repeat

}

STL Note
erase()

erase() is a method for some STL containers that enables you to remove elements from a
container. You can either just pass erase() a single element position (as an iterator)

//create an iterator pointing to the first element

vector<elements>::iterator beg = vecElements.begin();

//erase the first element

vecElements.erase(beg);

or you can pass erase() a range to remove. The range is defined by start and end
iterators. So, to remove the first to the third element of an std::vector, you would do
this:

vector<elements>::iterator beg = vecElements.begin();

vector<elements>::iterator end = beg + 3;

vecElements.erase(beg, end);

insert()

insert() is a method that enables you to insert elements into a container. As with
erase(), you can choose to insert a single element at a position pointed to by an
iterator or you can insert a range of elements. Here is a simple example, which inserts
the first four elements in vecInt1 at position five in vecInt2.

vector<int> vecInt1, vecInt2;

for (int i=0; i<10; ++i)

{

  vecInt1.push_back(i);

  vecInt2.push_back(i);

}

vector<int>::iterator RangeStart = vecInt1.begin();

Alternative Operators for the TSP
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vector<int>::iterator InsertPos  = vecInt2.begin()+5;

vecInt2.insert(InsertPos, RangeStart, RangeStart+4);

assign()

assign() is a method that enables you to assign a range of elements in one container
to another container. For example, if you had the std::vector of ints, vecInts, which
contained all the integers from 0 to 9 and you wanted to create a new std::vector
containing the range of integers from positions 3 to 6, you could do it like this:

vector<int>::iterator RangeStart = vecInt.begin() + 3;

vector<int>::iterator RangeEnd = vecInt.begin() + 6;

vector<int> newVec;

newVec.assign(RangeStart, RangeEnd);

You can also use it to add an element n number of times to an std::vector.The
following example adds six copies of the integer 999 to the std::vector, vecInts.

vector<int> vecInt;

vecInt.assign(6, 999);

advance()

advance() is a handy method that enables you to advance an iterator by a required
number of positions. To use it, you just pass advance() an iterator and the number of
element positions it’s to be advanced.

vector<int>::iterator RangeStart = vecInt.begin();

advance(RangeStart, 3);

sort()

To sort all the elements in a container, you can use sort, which will sort all the
elements in a given range, like so:

sort(vecGenomes.begin(), vecGenomes.end());

This will only work provided some sorting criteria has been defined for the elements
to be sorted. In the TSP program, I have provided a < overload for the SGenome struct,
so SGenomes will be sorted by the member variable dFitness. It looks like this:

friend bool operator<(const SGenome& lhs, const SGenome& rhs)

{

   return (lhs.dFitness < rhs.dFitness);

}
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Displacement Mutation (DM)
Select two random points, grab the chunk of chromosome between them, and then
reinsert at a random position displaced from the original.

0 . 1 . 2 . 3 . 4 . 5 . 6 . 7

becomes

0 . 3 . 4 . 5 . 1 . 2 . 6 . 7

This is particularly interesting to watch because it helps the genetic algorithm
converge to a short path very quickly, but then takes a while to actually go that few
steps further to get to the solution.

void CgaTSP::MutateDM(vector<int> &chromo)

{

   //return dependent upon mutation rate

   if (RandFloat() > m_dMutationRate) return;

   //declare a minimum span size

   const int MinSpanSize = 3;

   //these will hold the beginning and end points of the span

   int beg, end;

  //choose a section of the chromosome.

   ChooseSection(beg, end, chromo.size()-1, MinSpanSize);

   //setup iterators for the beg/end points

   vector<int>::iterator SectionStart = chromo.begin() + beg;

   vector<int>::iterator SectionEnd   = chromo.begin() + end;

   //hold on to the section we are moving

   vector<int> TheSection;

   TheSection.assign(SectionStart, SectionEnd);

   //erase from current position

   chromo.erase(SectionStart, SectionEnd);

   //move an iterator to a random insertion location

Alternative Operators for the TSP
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   vector<int>::iterator curPos;

   curPos = chromo.begin() + RandInt(0, chromo.size()-1);

   //re-insert the section

   chromo.insert(curPos, TheSection.begin(), TheSection.end());

}

Insertion Mutation (IM)
This is a very effective mutation and is almost the same as the DM operator, except
here only one gene is selected to be displaced and inserted back into the chromo-
some. In tests, this mutation operator has been shown to be consistently better than
any of the alternatives mentioned here.

0 . 1 . 2 . 3 . 4 . 5 . 6 . 7

becomes

0 . 1 . 3 . 4 . 5 . 2 . 6 . 7

I use insertion mutation as the default mutation operator in the code project for
this chapter.

void CgaTSP::MutateIM(vector<int> &chromo)

{

   //return dependent upon mutation rate

   if (RandFloat() > m_dMutationRate) return;

   //create an iterator for us to work with

   vector<int>::iterator curPos;

   //choose a gene to move

   curPos = chromo.begin() + RandInt(0, chromo.size()-1);

   //keep a note of the genes value

   int CityNumber = *curPos;

   //remove from the chromosome

   chromo.erase(curPos);

   //move the iterator to the insertion location
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   curPos = chromo.begin() + RandInt(0, chromo.size()-1);

   chromo.insert(curPos, CityNumber);

}

Inversion Mutation (IVM)
This is a very simple mutation operator. Select two random points and reverse the
cities between them.

0 . 1 . 2 . 3 . 4 . 5 . 6 . 7

becomes

0 . 4 . 3 . 2 . 1 . 5 . 6 . 7

Displaced Inversion Mutation (DIVM)
Select two random points, reverse the city order between the two points, and then
displace them somewhere along the length of the original chromosome. This is
similar to performing IVM and then DM using the same start and end points.

0 . 1 . 2 . 3 . 4 . 5 . 6 . 7

becomes

0 . 6 . 5 . 4 . 1 . 2 . 3 . 7

I’ll leave the implementation of these last two mutation operators as an exercise for
you to code. (That’s my crafty way of getting you to play around with the source!)

Alternative Permutation Crossover
Operators
As with mutation operators, inventing crossover operators that spawn valid permuta-
tions has been a popular sport amongst genetic algorithm enthusiasts. Here are the
descriptions and code for a couple of the better ones.

Alternative Operators for the TSP
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Order-Based Crossover (OBX)
To perform order-based crossover, several cities are chosen at random from one
parent and then the order of those cities is imposed on the respective cities in the
other parent. Let’s take the example…

Parent1:  2 . 5 . 0 . 3 . 6 . 1 .  4 . 7

Parent2:  3 . 4 . 0 . 7 . 2  . 5 . 1 . 6

The cities in bold are the cities which have been chosen at random. Now, impose
the order—5, 0, then 1—on the same cities in Parent2 to give Offspring1 like so:

Offspring1:  3 . 4 . 5 . 7 . 2  . 0 . 1 . 6

City one stayed in the same place because it was already positioned in the correct
order. Now the same sequence of actions is performed on the other parent. Using
the same positions as the first,

Parent1:  2 . 5 . 0 . 3 . 6 . 1 .  4 . 7

Parent2:  3 . 4 . 0 . 7 . 2  . 5 . 1 . 6

Parent1 becomes:

Offspring2:  2 . 4 . 0 . 3 . 6 . 1 . 5 . 7

Here is order-based crossover implemented in code:

void CgaTSP::CrossoverOBX(const vector<int>    &mum,

                          const vector<int>    &dad,

                          vector<int>          &baby1,

                          vector<int>          &baby2)

{

  baby1 = mum;
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  baby2 = dad;

  //just return dependent on the crossover rate or if the

  //chromosomes are the same.

  if ( (RandFloat() > m_dCrossoverRate) || (mum == dad))

  {

    return;

  }

  //holds the chosen cities

  vector<int> tempCities;

  //holds the positions of the chosen cities

  vector<int> positions;

  //first chosen city position

  int Pos = RandInt(0, mum.size()-2);

  //keep adding random cities until we can add no more

  //record the positions as we go

  while (Pos < mum.size())

  {

    positions.push_back(Pos);

    tempCities.push_back(mum[Pos]);

    //next city

    Pos += RandInt(1, mum.size()-Pos);

  }

  //so now we have n amount of cities from mum in the tempCities

  //vector we can impose their order in dad.

  int cPos = 0;

  for (int cit=0; cit<baby2.size(); ++cit)

  {

    for (int i=0; i<tempCities.size(); ++i)

    {

      if (baby2[cit]==tempCities[i])

Alternative Operators for the TSP
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      {

         baby2[cit] = tempCities[cPos];

         ++cPos;

         break;

      }

    }

  }

  //now vice versa. Choose the same positioned cities from dad and impose

  //their order in mum

  tempCities.clear();

  cPos = 0;

  //first grab the cities from the same positions in dad

  for(int i=0; i<positions.size(); ++i)

  {

    tempCities.push_back(dad[positions[i]]);

  }

  //and impose their order in mum

  for (cit=0; cit<baby1.size(); ++cit)

  {

    for (int i=0; i<tempCities.size(); ++i)

    {

      if (baby1[cit]==tempCities[i])

      {

         baby1[cit] = tempCities[cPos];

         ++cPos;

         break;

      }

    }

  }

}
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Position-Based Crossover (PBX)
This is similar to Order-Based Crossover, but instead of imposing the order of the
cities, this operator imposes the position. So, using the same example parents and
random positions, here’s how to do it.

Parent1:  2 . 5 . 0 . 3 . 6 . 1 .  4 . 7

Parent2:  3 . 4 . 0 . 7 . 2 . 5 . 1 . 6

TIP
Often, when you want to find the optimum route for a unit
in a game, it’s not desirable to just take into account the
distances involved. For example, say your game is based
around a 3D terrain engine. You will probably want to
consider such factors as the gradients encountered during
the route (because units moving uphill usually travel
slower and use more fuel) and also the surfaces the unit
will be traveling over. (Moving through mud is a lot slower
than moving across asphalt.)

To find the optimal route, a fitness function, which takes
into account all these factors, must be defined. This way, you
get the best trade off between distance covered and the
surfaces and gradients traveled over. For example, create a
sliding scale of penalties for all the different surfaces in your
game. The slower the surface is to travel over, the higher the
score your unit gets when you calculate distances between
waypoints (remember, high values when calculating the
distances convert to poor fitness scores). And similarly with
the gradients, penalize for ascents and reward for descents.
It may take a little fiddling to get the balance right, but
eventually you will end up with a genetic algorithm that
finds the optimum path for each different kind of unit, rather
than just the shortest path.

Alternative Operators for the TSP
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First, move over the selected cities from Parent1 to Offspring1, keeping them in the
same position.

OffSpring1: * . 5 . 0 . * . * . 1 . * . *

Now, iterate through Parent2’s cities and fill in the blanks if that city number has
not already appeared. In this example, filling in the blanks results in:

Offspring1: 3 . 5 . 0 . 4 . 7 . 1 . 2 . 6

Get it? Let’s run through the derivation of Offspring2, just to be sure. First, copy
over the selected cities into the same positions.

Offspring2: * . 4 . 0 . * . * . 5 . * . *

Now, fill in the blanks.

Offspring2: 2 . 4 . 0 . 3 . 6 . 5 . 1 . 7

And here’s how it looks in code:

void CgaTSP::CrossoverPBX(const vector<int>    &mum,

                          const vector<int>    &dad,

                          vector<int>          &baby1,

                          vector<int>          &baby2)

{

  //Return dependent on the crossover rate or if the

  //chromosomes are the same.

  if ( (RandFloat() > m_dCrossoverRate) || (mum == dad))

  {

    //make sure baby1 and baby2 are assigned some cities first!

    baby1 = mum;
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    baby2 = dad;

    return;

  }

  //initialize the babies with minus values so we can tell which positions

  //have been filled later in the algorithm

  baby1.assign(mum.size(), -1);

  baby2.assign(mum.size(), -1);

  int l = baby2.size();

  //holds the positions of the chosen cities

  vector<int> positions;

  //first city position

  int Pos = RandInt(0, mum.size()-2);

  //keep adding random cities until we can add no more

  //record the positions as we go

  while (Pos < mum.size())

  {

    positions.push_back(Pos);

    //next city

    Pos += RandInt(1, mum.size()-Pos);

  }

  //now we have chosen some cities it's time to copy the selected cities

  //over into the offspring in the same position.

  for (int pos=0; pos<positions.size(); ++pos)

  {

    //baby1 receives from mum

    baby1[positions[pos]] = mum[positions[pos]];

    //baby2 receives from dad

    baby2[positions[pos]] = dad[positions[pos]];

  }

  //fill in the blanks. First create two position markers so we know

Alternative Operators for the TSP
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  //whereabouts we are in baby1 and baby2

  int c1 = 0, c2 = 0;

  for (pos=0; pos<mum.size(); ++pos)

  {

    //advance position marker until we reach a free position

    //in baby2

    while( (baby2[c2] > -1) && (c2 < mum.size()))

    {

      ++c2;

    }

    //baby2 gets the next city from mum which is not already

    //present

    if ( (!TestNumber(baby2, mum[pos])) )

    {

      baby2[c2] = mum[pos];

    }

    //now do the same for baby1

    while((baby1[c1] > -1) && (c1 < mum.size()))

    {

      ++c1;

    }

    //baby1 gets the next city from dad which is not already

    //present

    if ( (!TestNumber(baby1, dad[pos])) )

    {

      baby1[c1] = dad[pos];

    }

  }

}

Now that you’ve seen how others have tackled the crossover operator, can you
dream up one of your own? This is not an easy task, so congratulations if you can
actually invent one!

I hope running through a few of the alternative operators for the traveling salesman
problem has given you an indication of the scope you can have with genetic algo-
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rithm operators. For the remainder of this chapter, though, I’m going to talk about
various tools and techniques you can apply to just about any kind of genetic algo-
rithm to improve its performance.

The Tools of the Trade
Envision the complete set of possible solutions to a problem as a kind of landscape
that dips and rises as you travel across it. The lower the ground, the more “fit” is the
solution represented at that point. Conversely, the high ground represents extremely
poor solutions. Imagine the genetic algorithm as a ball that rolls around on that
landscape until it falls into a trough. As I’ve explained, this would represent a solu-
tion, but, it may not be the best solution. Only now, the ball is stuck and cannot roll
any further. This is what is known as a local minima. Figure 5.2 shows you what I mean.

Ideally, you want the ball to roll over as
much landscape as possible, until it finds
the deepest trough to fall into. This
represents the best solution. Or, failing
that, at least provide some way of “kick-
ing” the ball out of the shallow troughs
so it can continue its journey across the
landscape.

Figure 5.2

A GA stuck in a local minima.

NOTE
In some texts, you will find the
fitness landscape inverted and,
therefore, the author may refer to
an algorithm getting stuck at a local
maxima. Either way, the concept is
the same.

The Tools of the Trade
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Figure 5.2 shows the fitness landscape for a problem with just one parameter that
needs solving. A two-parameter fitness landscape would be in 3D, as shown in
Figure 5.3.

Figure 5.3

A two-parameter fitness
landscape.

The x- and z-axis represent the parameters, and the y-axis represents the fitness.
Now, there are all sorts of hills, troughs, ridges, and other features for the genetic
algorithm to negotiate before it can settle at the optimum. And that’s just with two
parameters! When you go above two parameters, you have to let your imagination
go wild because you’ve entered the incredible domain of mathematical hyper-
spaces. However, the concept is just the same and there will be hills and troughs in
the landscape, just the same. (If Dali had still been alive, I would have asked Pre-
mier Press to hire him to draw you a diagram of hyperspace, but unfortunately,
you’ll have to make do with your imagination.)

To keep the ball rolling, you need to equip yourself with tools you can use to cajole
your genetic algorithms into doing what you want. In this section, I’m going to
spend some time discussing various techniques and additional operators you can
use to help your genetic algorithms converge on a solution more efficiently.

Selection Techniques
In junior high, I was useless at most sports, particularly team sports, and for ages, I
had to suffer the daily playground humiliation of being the last to be chosen for a
game of soccer. Remember how all the kids would stand in a line and the two most
athletic boys in the school would, as captains, take turns selecting their team? Well, I
was the boy who was always chosen last and put safely out of the way in the goalie
position. Imagine my relief when after a couple of years of this, an even geekier kid
moved into town. Oh what joy!
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Selection is how you choose individuals from the population to provide a gene base
from which the next generation of individuals is created. This might mean individu-
als are selected and placed into the new generation without modification ala elit-
ism, as we discussed in the last chapter, but usually it means the chosen genomes are
selected to be parents of offspring which are created through the processes of
mutation and recombination. How you go about choosing the parents can play a
very important role in how efficient your genetic algorithm is. Unlike choosing a
soccer team, if you choose the fittest individuals all the time, the population may
converge too rapidly at a local minima and get stuck there. But, if you select indi-
viduals at random, then your genetic algorithm will probably take a while to con-
verge (if it ever does at all). So, the art of selection is choosing a strategy which gives
you the best of both worlds—something that converges fairly quickly yet enables the
population to retain its diversity.

Elitism
As previously discussed, elitism is a way of guaranteeing that the fittest members of a
population are retained for the next generation. In the last chapter, the code
example used a little bit of elitism to select two copies of the best individual to go
through to the next generation. To expand on this, it can be better to select n
copies of the top m individuals of the population to be retained. I often find that
retaining about 2-5% of the population size gives me good results. The function
name I give for this expanded version of elitism is called GrabNBest. Its prototype
looks like this:

void    GrabNBest(int              NBest,

                  const int        NumCopies,

                  vector<SGenome> &vecNewPop);

So, to retain two copies each of the fittest three members of the population, you
would call

GrabNBest(3, 2, vecNewPop);

When you play around with the example program, you will discover that using
elitism works well with just about every other technique described in this chapter
(except stochastic universal sampling, which will be discussed soon).

Steady State Selection
Steady state selection works a little like elitism, except that instead of choosing a
small amount of the best individuals to go through to the new generation, steady
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state selection retains all but a few of the worst performers from the current popula-
tion. The remainder are then selected using mutation and crossover in the usual
way. Steady state selection can prove useful when tackling some problems, but most
of the time it’s inadvisable to use it.

Fitness Proportionate Selection
Selection techniques of this type choose offspring using methods which give indi-
viduals a better chance of being selected the better their fitness score. Another way
of describing it is that each individual has an expected number of times it will be
chosen to reproduce. This expected value equates to the individual’s fitness divided
by the average fitness of the entire population. So, if you have an individual with a
fitness of 6 and the average fitness of the overall population is 4, then the expected
number of times the individual should be chosen is 1.5.

Roulette Wheel Selection

A common way of implementing fitness proportionate selection is roulette wheel
selection, as I have already discussed. This technique does have its drawbacks,
however. Because roulette wheel selection is based on using random numbers and
because the population sizes of genetic algorithms are typically small (sizes between
50 and 200 are common), the number of children allocated to each individual can
be far from its expected value. Even worse, it’s probable that roulette wheel selec-
tion could miss the best individuals altogether! This is one of the reasons elitism is a
good idea when utilizing roulette wheel selection—it ensures you never lose the
best individuals to chance.

Stochastic Universal Sampling

Stochastic Universal Sampling (SUS for short) is an attempt to minimize the prob-
lems of using fitness proportionate selection on small populations. Basically, instead
of having one wheel which is spun several times to obtain the new population, SUS
uses n evenly spaced hands, which are only spun once as shown in Figure 5.4. The
amount of pointers is equal to the amount of offspring required.

Here is the code which implements this type of sampling:

void CgaTSP::SUSSelection(vector<SGenome> &NewPop)

{

  //this algorithm relies on all the fitness scores to be positive so

  //these few lines check and adjust accordingly (in this example
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  //Sigma scaling can give negative fitness scores

  if (m_dWorstFitness < 0)

  {

    //recalculate

    for (int gen=0; gen<m_vecPopulation.size(); ++gen)

    {

      m_vecPopulation[gen].dFitness += fabs(m_dWorstFitness);

    }

    CalculateBestWorstAvTot();

  }

Some of the scaling techniques discussed in this chapter can result in negative
fitness scores for some of the population. The preceding lines of code check for this
possibility and readjust the scores accordingly. If you know for sure your fitness
scores will never be negative, you can omit this.

  int curGen = 0;

  double sum = 0;

  //NumToAdd is the amount of individuals we need to select using SUS.

  //Remember, some may have already been selected through elitism

  int NumToAdd = m_iPopSize - NewPop.size();

  //calculate the hand spacing

Figure 5.4

The SUS wheel of probability.
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  double PointerGap = m_dTotalFitness/(double)NumToAdd;

  //choose a random start point for the wheel

  float ptr = RandFloat() * PointerGap;

  while (NewPop.size() < NumToAdd)

  {

    for(sum+=m_vecPopulation[curGen].dFitness; sum > ptr; ptr+=PointerGap)

    {

      NewPop.push_back(m_vecPopulation[curGen]);

      if( NewPop.size() == NumToAdd)

      {

        return;

      }

    }

    ++curGen;

  }

}

If you use SUS in your own genetic algorithms, it is inadvisable to use elitism with it
because this tends to mess up the algorithm. You will clearly see the effect that switch-
ing elitism on or off has on SUS selection when you run this chapter’s executable.

Tournament Selection
To use tournament selection, n individuals are selected at random from the population,
and then the fittest of these genomes is chosen to add to the new population. This
process is repeated as many times as is required to create a new population of genomes.
Any individuals selected are not removed from the population and therefore can be
chosen any number of times. Here’s what this algorithm looks like in code.

SGenome& CgaTSP::TournamentSelection(int N)

{

  double BestFitnessSoFar = 0;

  int ChosenOne = 0;

  //Select N members from the population at random testing against
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  //the best found so far

  for (int i=0; i<N; ++i)

  {

    int ThisTry = RandInt(0, m_iPopSize-1);

    if (m_vecPopulation[ThisTry].dFitness > BestFitnessSoFar)

    {

      ChosenOne = ThisTry;

      BestFitnessSoFar = m_vecPopulation[ThisTry].dFitness;

    }

  }

  //return the champion

  return m_vecPopulation[ChosenOne];

}

This technique is very efficient to implement because it doesn’t require any of the
preprocessing or fitness scaling sometimes required for roulette wheel selection and
other fitness proportionate techniques (discussed later in the chapter). Because of
this, and because it’s a darn good technique anyway, you should always try this
method of selection with your own genetic algorithms. The only drawback I’ve
found is that tournament selection can lead to too quick convergence with some
types of problems.

I’ve also seen an alternative description of this technique, which goes like this: A
random number is generated between 0 and 1. If the random number is less than a
pre-determined constant, for example cT (a typical value would be 0.75), then the
fittest individual is chosen to be a parent. If the random number is greater than cT,
then the weaker individual is chosen. As before, this is repeated until a new popula-
tion of the correct size has been spawned.

Interesting Fact
NASA has used genetic algorithms to successfully calculate low altitude satellite orbits
and more recently to calculate the positioning of the Hubble space telescope.

Scaling Techniques
Although using selection on the raw (unprocessed) fitness scores can give you a
genetic algorithm that works (it solves the task you’ve designed it for), often your
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genetic algorithm can be made to perform better if the fitness scores are scaled in
some way before any selection takes place. There are various ways of doing this and
I’m going to spend the next few pages describing the best of the bunch.

Rank Scaling
Rank scaling can be a great way to prevent too quick convergence, particularly at
the start of a run when it’s common to see a very small percentage of individuals
outperforming all the rest.

The individuals in the population are simply ranked according to fitness, and then
a new fitness score is assigned based on their rank. So, for example, if you had a
population of five individuals with the fitness scores shown in Table 5.1, all you do is
sort them and assign a new fitness based on their rank within the sorted population.
See Table 5.2

Once the new ranked fitness scores have been applied, you select individuals for the
next generation using roulette wheel selection or a similar fitness proportionate
selection method. (Please note you would never, in practice, have a population of
just five, I’m just using five to demonstrate the principle).

This technique avoids the possibility that a large percentage of each new generation
is being produced from a very small number of highly fit individuals, which can
quickly lead to premature convergence. In effect, rank scaling ensures your popula-
tion remains diverse. The other side of the coin is that the population may take a
lot longer to converge, but often you will find that the greater diversity provided by
this technique leads to a more successful result for your genetic algorithm.

Table 5.1 Fitness Scores Before Ranking

Individual Score

1 3.4

2 6.1

3 1.2

4 26.8

5 0.7
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Sigma Scaling
If you use raw fitness scores as a basis for selection, the population may converge
too quickly, and if they are scaled as in rank selection, the population may converge
too slowly. Sigma scaling is an attempt to keep the selection pressure constant over
many generations. At the beginning of the genetic algorithm, when fitness scores
can vary wildly, the fitter individuals will be allocated less expected offspring. To-
ward the end of the algorithm, when the fitness scores are becoming similar, the
fitter individuals will be allocated more expected offspring.

The formula for calculating each new fitness score using sigma scaling is:

if σ = 0 then the fitness = 1

else

Table 5.2 Fitness Scores After Ranking

Individual Old Fitness New Fitness

4 26.8 5

2 6.1 4

1 3.4 3

3 1.2 2

5 0.7 1

where the Greek letter sigma, σ, represents the standard deviation of the population.

A few of you will probably be wondering what the standard deviation is and how it’s
calculated. Well, the standard deviation is the square root of the population’s
variance. The variance is a measure of spread within the fitness scores. Figure 5.5
shows an example of a population with a low variance.

The hump in the middle of the graph represents the mean (the average) fitness
score. Most of the population’s scores are clustered around this hump. The spread,
or variance, is the width of the hump at the base. Figure 5.6 shows a population with
a high variance, and as you can see, the hump is lower and more spread out.
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Now that you know what variance is, let me show you how to calculate it. Imagine we
are only dealing with a population of three, and the fitness scores are 1, 2, and 3. To
calculate the variance, first calculate the mean of all the fitness scores.

Figure 5.5

Population with a low
spread.

Figure 5.6

Population with a high
spread.
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Then the variance is calculated like this

A more mathematical way of writing this is

Where f is the fitness of the current individual, fm is the average fitness of the
population, and N is the population size. The weird Greek symbol Σ is also called
sigma but it’s the capital of σ, just like A is the capital of a. The Σ symbol is a sum-
mation symbol, and in this example it indicates that all the values of

should be summed before being divided by N.

Once the variance has been calculated, it’s a trivial matter to compute the square
root to give the standard deviation:

The code for applying sigma scaling to the traveling salesman problem looks like this:

void CgaTSP::FitnessScaleSigma(vector<SGenome> &pop)

{

  double RunningTotal = 0;

  //first iterate through the population to calculate the standard

  //deviation

  for (int gen=0; gen<pop.size(); ++gen)

  {

    RunningTotal += (pop[gen].dFitness - m_dAverageFitness) *

                    (pop[gen].dFitness - m_dAverageFitness);

  }

  double variance = RunningTotal/(double)m_iPopSize;

  //standard deviation is the square root of the variance

  m_dSigma = sqrt(variance);

  //now iterate through the population to reassign the fitness scores
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  for (gen=0; gen<pop.size(); ++gen)

  {

    double OldFitness = pop[gen].dFitness;

    pop[gen].dFitness = (OldFitness - m_dAverageFitness) /

                        (2 * m_dSigma);

  }

  //recalculate values used in selection

  CalculateBestWorstAvTot();

}

The last call to CalculateBestWorstAvTot is there to recalculate all the best, worst, and
average values for the entire population, which some of the selection types use.
m_dSigma is a member variable because it can be used to stop the run if the variance
becomes zero (all the fitness scores are therefore identical and so there is not much
point continuing). There are a few areas in which this function could be speeded
up, but I’ve written it like this so that it follows the equations more literally.

Sigma scaling is interesting to watch in action because the population converges very
quickly in the first few generations, but then takes a long time to finally reach a solution.

Interesting Fact
The bots created for the game Quake3 were developed using genetic algorithms. A
genetic algorithm was used to optimize the fuzzy logic controllers for each bot. Briefly
put, fuzzy logic is logic extended to encompass partial truths. So, instead of something
having to be black or white, as in conventional logic, when using fuzzy logic, something
can be shades of gray too. The Quake3 bot uses fuzzy logic to indicate how much it
wants to do something. It doesn’t just indicate that it wants to pick a certain item;
using fuzzy logic it can determine that it is in 78% favor of picking up the railgun and
56% in favor of picking up the armor.

Boltzmann Scaling
You’ve learned how to keep the selection pressure constant over a run of your
genetic algorithm by using sigma scaling, but sometimes you may want the selection
pressure to vary. A common scenario is one in which you require the selection
pressure to be low at the beginning so that diversity is retained, but as the genetic
algorithm converges closer toward a solution, you want mainly the fitter individuals
to produce offspring.
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One way of achieving this is by using Boltzmann scaling. This method of scaling uses
a continuously varying temperature to control the rate of selection. The formula is

Each generation, the temperature is decreased by a small value, which has the effect
of increasing the selection pressure toward the fitter individuals. This is the code
implementation of Boltzmann scaling from the TSP project.

void CgaTSP::FitnessScaleBoltzmann(vector<SGenome> &pop)

{

  //reduce the temp a little each generation

  m_dBoltzmannTemp -= BOLTZMANN_DT;

  //make sure it doesn't fall below minimum value

  if (m_dBoltzmannTemp< BOLTZMANN_MIN_TEMP)

  {

    m_dBoltzmannTemp = BOLTZMANN_MIN_TEMP;

  }

  //first calculate the average fitness/Temp

  double divider = m_dAverageFitness/m_dBoltzmannTemp;

  //now iterate through the population and calculate the new expected

  //values

  for (int gen=0; gen<pop.size(); ++gen)

  {

    double OldFitness = pop[gen].dFitness;

    pop[gen].dFitness = (OldFitness/m_dBoltzmannTemp)/divider;

  }

  //recalculate values used in selection

  CalculateBestWorstAvTot();

}

In the TSP solver, the temperature is initially set to twice the number of cities.
BOLTZMANN_DT is #defined as 0.05 and BOLTZMANN_MIN_TEMP is #defined as 1.
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Alternative Crossover Operators
Utilizing different crossover and mutation operators for your genetic algorithms
can often be a good idea. How you implement these operators depends very much
on how your problem is encoded. As you’ve already seen, using a crossover operator
that works well for one type of problem may have disastrous results when applied to
another. The same goes for mutation operators. Although, for most genome
encodings you are limited in what you can do with a mutation operator—it’s typi-
cally such a simple operation—there are usually a few different ways of performing
crossover. Here are explanations of the most popular types.

Single-Point Crossover
This is the first crossover operator I introduced you to in Chapter 3, “An Introduc-
tion To Genetic Algorithms.” It simply cuts the genome at some random point and
then switches the ends between parents. It is very easy and quick to implement and
is generally effective to some degree with most types of problems.

Two-Point Crossover
Instead of cutting the genome at just one point, two-point crossover (you guessed
it) cuts the genome at two random points and then swaps the block of genes be-
tween those two points. So, if you had two binary encoded parents like this,

Parent1: 1010001010

Parent2: 1101110101

and the chosen crossover points were after the third and seventh genes, two-point
crossover would go like this.

Parent1: 101 0001 010

Parent2: 110 1110 101
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Swap the “belly” block of genes giving offspring.

Child1: 101 1110 010

Child2: 110 0001 101

See Figure 5.7 for an illustration of this process.

Two-point crossover is sometimes beneficial because it can create combinations of
genes that single-point crossover simply cannot provide. With single point, the end
genes are always swapped over and this may not be favorable for the problem at
hand. Two-point crossover eliminates this problem.

Multi-Point Crossover
Why stop at just two crossover points? There’s no need to limit the amount of cross-
over points you can have. Indeed, for some types of encoding, your genetic algorithm
may perform better if you use multiple crossover points. The easiest way of achieving
this is to move down the length of the parents, and for each position in the chromo-
some, randomly swap the genes based on your crossover rate, as in Figure 5.8.

Figure 5.7

Two-point crossover.

Figure 5.8

Multi-point crossover.
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Here is what the code implementation of multi-point crossover looks like.

void CGenAlg::CrossoverMultiPoint(const vector<gene_type> &mum,

                                  const vector<gene_type> &dad,

                                  vector<gene_type>       &baby1,

                                  vector<gene_type>       &baby2)

{

  //iterate down the length of the genomes swapping genes

  //depending on the crossover rate

  for (int gen=0; gen<mum.size(); ++gen)

  {

    if (RandFloat() < CrossoverRate))

    {

      //swap the genes

      baby2.push_back(mum[gen]);

      baby1.push_back(dad[gen]);

    }

    else

    {

      //don't swap the genes

      baby1.push_back(mum[gen]);

      baby2.push_back(dad[gen]);

    }

  }

}

Sometimes you will see this type of crossover described as parameterized uniform
crossover. I tend to favor the name multi-point crossover because it says exactly
what it does.

For some types of problems, multi-point crossover works very well, but on others it
can jumble up the genes too much and act more like an over enthusiastic mutation
operator. Common values for the crossover rate using this type of crossover opera-
tor are between 0.5 and 0.8.

Niching Techniques
Niching is a way of keeping the population diverse by grouping similar individuals
together. One of the most popular niching techniques is called explicit fitness sharing.
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This is a method in which the individuals in the population are grouped together
according to how similar their genomes are, and then the fitness score of each
individual is adjusted by “sharing” it amongst that group’s members. This ensures
similar individuals in the population are punished, thereby retaining diversity. To
clarify, let’s take the example of a population of binary encoded genomes. You can
measure the difference between two genomes by counting all the bits in the ge-
nome that match. For example, the genomes

Genome1: 10100010100

Genome2: 00100101010

match at five places shown in bold. You can say their compatibility score is 5. To
group the population into niches of similar genomes, you just test each genome
against a sample genome to obtain a compatibility score for each. Genomes with
similar compatibility scores are grouped together and then their fitness score is
adjusted by dividing the raw fitness by the size of that genome’s niche. Table 5.3
should help make this clearer for you.

Table 5.3 Fitness Sharing In Action

Genome ID Niche ID Raw Fitness Adj Fitness

1 1 16 16/3 = 5.34

5 1 6 6/3 = 2

6 1 10 10/3 = 3.34

3 2 6 6/1 = 6

2 3 9 9/3 = 3

4 3 10 10/3 = 3.34

8 3 20 20/3 = 6.67

9 4 3 3/2 = 1.5

10 4 6 6/2 = 3
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As you can see, fitness sharing is very effective at penalizing similarly constructed
genomes and can be a terrific way of making sure your population remains diverse.
I’ll be discussing niching techniques in more detail later on in the book.

Summing Up
By the time you’ve experimented with a few of the techniques described in this
chapter, you will have developed a pretty good feel for what genetic algorithms are
all about.

In the next few chapters, I’ll often be using the simplest combination of genetic
algorithm techniques possible to achieve the desired result. This will give you the
opportunity to try out, first hand, the techniques you’ve looked at so far to see how
they may aid or hinder the evolution of different types of problems.

Stuff to Try
1. Go back and apply what you have learned in this chapter to the Pathfinder

problem discussed in Chapter 3, “An Introduction to Genetic Algorithms.”

2. Can you create a genetic algorithm for solving the 8-puzzle? (The 8-puzzle is
that puzzle in which you have to slide numbered tiles around in a tray until
all the numbers appear in order. See Figure 5.9)

3. Create a genetic algorithm to calculate the combination of letters that will
give the highest score possible on a Boggle board.

Figure 5.9

An unsolved 8-puzzle board.
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During the heat of the space race in the 1960s, NASA decided it needed a ballpoint pen
to write in the zero gravity confines of its space capsules.

After considerable research and development, the Astronaut Pen was developed at a cost
of $1 million.

The pen worked and also enjoyed some modest success as a novelty item back here on earth.

The Soviet Union, faced with the same problem, used a pencil.

I n this chapter, you are going to learn how to encode and evolve behavior patterns
with genetic algorithms. This type of encoding enables you to evolve behavior for

a wide variety of game objects, from arcade-style aliens to racing lines for sports
cars. When you think about it, the list of uses you could apply this type of genetic
algorithm to is vast. What’s more, behavior evolved using this method uses very little
processor power in your actual game.

The example I’m going to use is that of evolving the sequence of control patterns
required to gently guide and land a lunar module onto a small landing platform, as
shown in Figure 6.1.

Figure 6.1

A luminous lunar lander landing.

Before I talk about the genetic algorithm though, I’m going to spend some time
explaining all the graphics techniques used in this and later code examples and the
physics and mathematics that goes with them. This way, I can be sure you under-
stand every line of code.
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If you already know about matrices, transformations, vectors, and Newtonian phys-
ics, be my guest and skip the next few pages. If not, then make like a sponge, read
on, and absorb.

Creating and Manipulating
Vector Graphics
I think the best way of teaching you graphics and math stuff is by talking you
through the creation of a user-controlled lunar lander, step by step. This way, in
addition to becoming familiar with the required techniques, you will also get the
chance to see how difficult it is to land the lunar module before you learn how to
code a genetic algorithm to do it!

The 2D graphics needed for the game will be very simple. You’ll need a lunar
lander object, a landing platform object, and a sprinkling of twinkling stars. So, I
guess the first thing I need to show you is how to create a data structure for repre-
senting 2D shapes.

Points, Vertices, and Vertex Buffers
A shape is defined by a series of connected points in space. A point in 2D space is
represented by its position on the x-axis and its position on the y–axis, as shown in
Figure 6.2.

Figure 6.2

The 2D coordinate system.
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A point, in computer graphics parlance, is most often referred to as a vertex. To
create a shape, all you have to do is store all the vertices that make up that shape in
some sort of data structure. Let’s take the extremely simple shape shown in Figure
6.3 as an example. If my memory is correct, that’s a similar type of shape to the gun
in the original space invader games. What a long way graphics have come since
those days, eh? Notice the shape is centered around the origin (0, 0).

Figure 6.3

Defining a simple shape.

I’ll be discussing why your shapes should be centered around the origin shortly, but
for now, just take it from me that they should be. The data structure I use to store a
vertex in my code is called an SPoint and its definition looks like this.

struct SPoint

{

  double x, y;

  SPoint(double a = 0, double b = 0):x(a),y(b){}

};

To store an entire shape, you just create an array of SPoints, which is a collection of
all the vertices that make up that shape. I use std::vectors to store all the shapes
used in the sample code. These vectors of vertices are called vertex buffers, and I
suffix their names with “VB” to clarify this. For example, I would define and initial-
ize a vertex buffer for the shape shown in Figure 6.3 like this:

vector<SPoint>  vecGunVB;

const int NumGunVerts = 8;

const SPoint gun[NumGunVerts] = {SPoint(2,1),
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                                  SPoint(2,-1),

                                  SPoint(-2,-1),

                                  SPoint(-2,1),

                                  SPoint(-1,1)

                                  SPoint(-1,2),

                                  SPoint(1,2),

                                  SPoint(1,1)};

for (int i=0; i<NumGunVerts; ++i)

{

  vecGunVB.push_back(gun[i]);

}

Then to draw the shape you simply write a function which connects all the vertices
with lines in the correct order—just like those join the dots books you used to love
as a kid!

It’s common practice to load all the vertex coordinates required for your game
objects from data files. However, because my examples do not use many objects, I
simply defined all my vertices as const arrays at the beginning of the appropriate file
and then initialized the vertex buffers from these arrays in the constructor of the
class. If you take a quick peek at the CLander.cpp file found on the CD in the folder
Chapter6/Lunar Lander - Manned, you will see how I initialized the vertex buffers
for the lunar lander shape and the lunar lander jet shape.

Well, now you know how to define a shape, but you don’t know how to draw it at the
correct position and orientation on the screen. After all, if you were to draw the
space invader gun shape to your screen as you have defined it, you’d get something
that looks like Figure 6.4!

Figure 6.4

Uh-oh!
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This is because the gun shape’s vertices are centered around the origin. A lot of the
vertices have negative coordinates, which the default Windows drawing mode does
not support. Also, the direction of the windows y-axis is inverted to the normal
coordinate system and therefore the shape appears upside down. What a mess!

Transforming Vertices
You need a way of adjusting the shape’s vertices so they appear in the correct place
and with the correct orientation and scale. This is where transformations come in.
Before I rush ahead of myself though, first you need to know a few more details
about your game object before you can calculate where to place it on your screen.
You need to know its position in screen coordinates, its rotation, and its scale. There-
fore, a very simple data structure for a game object might look like this:

struct GameObject

{

  double dPosX, dPosY;

  double dRotation;

  double dScale;

  //its vertices

  vector<SPoint> vecShapeVB;

};

Now that you know where the object should be, you have to figure out how to
calculate the new positions of each vertex in the vertex buffer so the object is drawn
in the correct place on the screen. You do this using a series of transformations, so
let’s spend some time taking a look at each type of transformation.

Translation
Translation is simply the process of moving a point or group of points from one
place to another. Let’s use the space invader gun shape as an example, and let’s say
that its present location in the game world is at coordinate (5, 6), meaning the
gun’s center should be positioned around (5, 6).

You need to find a way of adjusting the vertices in the gun’s vertex buffer so that
when drawn, the gun will appear on your screen at the correct location—centered
around (5, 6) instead of centered around (0, 0). To do that, all you have to do is
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write a function which will add 5 to the x element of every vertex, and add 6 to
every y element. This way, the vertices will be transformed accordingly and posi-
tioned on your screen, as shown in Figure 6.5 (note the shape still appears upside
down because the y-axis is inverted).

In other words, if the coordinates of
each vertex in the vertex buffer are
described by vertX and vertY, and the
position in the game world of the object
these vertices describe is posX and posY,
then you can say:

ScreenX = vertX + posX;

ScreenY = vertY + posY;

So, to move a whole object, you just
apply this to each vertex in the vertex
buffer and bingo! It’s positioned correctly.

Scaling
Scaling is the process by which your object is increased or decreased in size. It’s very
simple to perform; all you need to do is multiply your object’s local coordinates by
the scaling factor. Figure 6.6 shows the gun object being scaled by a factor of two.

Figure 6.5

Translating a shape.

NOTE
The untransformed coordinates of
an object are known as the object’s
Local Coordinates and the coordi-
nates of the transformed vertices—
the coordinates in the game world—
are known as the object’s World
Coordinates.
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You can also extend this so you can scale independently in each direction. For
example, if you want to scale by sx in the x direction and sy in the y direction, the
formula becomes

newX = x × sx

newY = y × sy

Rotation
Rotation is the hardest transformation to understand because you need to use
trigonometry. But once you get the hang of it, rotation becomes as easy as one, two,
three; especially when you learn about rotation matrices in the next section. Well,
maybe not that easy, but you know what I mean.

The first thing you need to understand is that the angles used in computer func-
tions are almost always measured in radians, not degrees. As you probably already
know, there are 360 degrees in a circle. That’s the equivalent of 2 × pi radians, in
which pi is 3.14159. It is very important that you remember this fact!

Now, assume you have a point, p1, at (5, 3) and you want to rotate that point by 30
degrees so it will end up giving you a new coordinate, p2. See Figure 6.7.

The equations you need to rotate a point around the origin by an angle theta are these:

newX = oldX × cos(theta) - oldY × sin(theta)

newY = oldX × sin(theta) + oldY × cos(theta)

For the given example, first convert 30 degrees into radians. Each degree is 2 × pi/
360 radians—or 0.017453 radians, so

30 degrees = 30 × 0.017453 = 0.52359 radians

Figure 6.6

Scaling in action.
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Plugging the numbers into the formula results in:

newX = 5 × cos(0.52359) - 3 × sin(0.52359) = 2.830

newY = 5 × sin(0.52359) + 3 × cos(0.52359) = 5.098

The result of the rotation is shown in
Figure 6.7. As you can see, when you
rotate a point by an angle, the point
moves around the origin in an
anticlockwise direction (the y-axis is
pointing upwards and the x-axis is
pointing to your right). This is because,
although most of us think in a clockwise
direction, mathematicians like to think
in an anticlockwise direction!

When you use the same equation using a
y-axis that points downward and an x-
axis pointing to the right (as in a normal
application window), the rotation will go
clockwise. If you ever require the rota-
tion to go in the opposite direction, you can simply reverse the signs of the sin parts
of the equations, like so:

newX = oldX × cos(theta) + oldY × sin(theta)

newY = (-1) × oldX × sin(theta) + oldY × cos(theta)

Figure 6.7

Rotating a point.

NOTE
In reality, converting degrees into
radians and then back into degrees
again is far too time-consuming for
a game. It’s much better to just get
used to using radians all the time.
Trust me, after a very short time
you’ll find radians to be just as easy
to use as degrees. You’ll even start to
think in radians. (Although, if you
skateboard, I doubt you’ll ever say
stuff like, “Wow! What an incredible
Five Pi that was, man!”)
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Or even easier, you can use the original equation but just negate the rotation:

newX = oldX × cos(-theta) - oldY × sin(-theta)

newY = oldX × sin(-theta) + oldY × cos(-theta)

Putting It All Together
Now that you know how to transform vertices, all you need to do is put all three
transforms together into one function, which is called just before you draw the
shape to the screen. This function is usually referred to as the World Transformation
function because it converts your shape’s vertices from local coordinates into world
coordinates. I’ve written some simple code that demonstrates all three transforma-
tions working on the space invader gun shape, which can be found in the Chap-
ter6/ShapeManipulation folder on the CD. You can use the cursor keys to alter the
gun’s rotation and scale. The A, S, P, and L keys move it around the screen.

This is what the CGun class definition and the CGun::WorldTransform function look like
from that code:

class CGun

{

public:

  //its position in the world

  double         m_dPosX,

                 m_dPosY;

  //its rotation

  double         m_dRotation;

  //its scale

  double         m_dScale;

  //its vertices

  vector<SPoint> m_vecGunVB;

  vector<SPoint> m_vecGunVBTrans;

  CGun(double x,

       double y,

       double scale,
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       double rot);

  void WorldTransform();

  void Render(HDC &surface);

  void Update();

};

void CGun::WorldTransform()

{

  //copy the original vertices into the buffer about to be transformed

  m_vecGunVBTrans = m_vecGunVB;

  //first we rotate the vertices

  for (int vtx=0; vtx<m_vecGunVBTrans.size(); ++vtx)

  {

    m_vecGunVBTrans[vtx].x = m_vecGunVB[vtx].x * cos(m_dRotation) -

                             m_vecGunVB[vtx].y * sin(m_dRotation);

     m_vecGunVBTrans[vtx].y = m_vecGunVB[vtx].x * sin(m_dRotation) +

                              m_vecGunVB[vtx].y * cos(m_dRotation);

  }

  //now scale the vertices

  for (vtx=0; vtx<m_vecGunVBTrans.size(); ++vtx)

  {

    m_vecGunVBTrans[vtx].x *= m_dScale;

    m_vecGunVBTrans[vtx].y *= m_dScale;

  }

  //and finally translate the vertices

  for (vtx=0; vtx<m_vecGunVBTrans.size(); ++vtx)

  {

    m_vecGunVBTrans[vtx].x += m_dPosX;

    m_vecGunVBTrans[vtx].y += m_dPosY;

  }

}

The order in which the transformations take place is very important. If the shape is
translated before it’s rotated, the translated shape will be rotated around the origin.
This is why you should always design your game objects with their vertices centered
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around the origin—so the rotations and scaling work out correctly. Actually, it’s a
good idea for you to try jumbling up the order of the transformations in the sample
code just to see what sort of results you end up with.

The gun object uses two vertex buffers: one to keep a record of the original vertices
before transformation and the other to store the transformed vertices ready for
rendering to the screen. This way, you always have a copy of the original vertices to
work from.

Matrix Magic
In the previous example, you saw how a shape is transformed by shoving each vertex
in the shape through three different transformations: rotation, scaling, and transla-
tion. So, for every vertex, your program is doing three calculations. Matrices allow
you to combine all the transformations into one matrix, and then you use that one
matrix on all the vertices. That saves a load of processor time when you are trans-
forming hundreds or even thousands of vertices each frame.

Matrices are fantastic things for computer graphics. You may have hated them
in school, but I can assure you, if you program a lot of graphics, you’ll grow to
love them.

Okay, but What Exactly Is a Matrix?
A matrix is an array of numbers. It can be one-dimensional, two-dimensional, or
many-dimensional—just like the arrays you create within your code. A transformation
matrix is always two-dimensional. This is an example of a 2D matrix.

The example matrix has three rows and
three columns, so it is described as a 3 x 3
matrix. Each number in the matrix is
referred to as an element. So, for example,
the number 15 in the previous matrix is
the element at position (1, 2).

NOTE
Although programmers number the
elements in their arrays from zero,
mathematicians number their
matrices from 1. This can be very
confusing when you first start
reading mathematical texts!
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You can add, subtract, divide, and multiply matrices just like you can real numbers,
although the only operation you need to perform transformations is multiplication.
So, that’s what I’m going to show you.

How to Multiply Two Matrices Together
Yikes! I wasn’t looking forward to explaining this! It’s not that it’s hard to do, it’s
just hard to explain. I think the best way is to show you.

First of all, let me explain how you multiply a row with a column. Here’s an example.

The number of elements in the row and the number of elements in the column
must be the same. If they are different, you cannot do this multiplication.

Now that you understand how to multiply a row and a column, you can multiply
matrices. To multiply matrix A by matrix B, multiply every row of A with every
column of B. Here is an example.

Let me repeat: to multiply two matrices together, the size of the rows and columns
must be the same. Therefore, you can multiply the following two matrices together.

But not these:

Try doing the multiplication for the first equation. The answer is given at the end of
this chapter.

Creating and Manipulating Vector Graphics
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The Identity Matrix
In mathematics, the number 1 is very useful. This is because you can multiply any
number by 1 and end up with the number you started with. I know that sounds like
a really obvious thing to say, but take my word for it, mathematicians would be lost
without the number 1.

Matrices have an equivalent of the number 1, and it is called the identity matrix. Because
matrices can be any size, you need to define an identity matrix for the size you require.
You’ll be working with 3 x 3 matrices, so the identity matrix looks like this:

As you can see, if you multiply this identity matrix with any other compatible matrix
(remember the rows and columns rule?), you’ll end up with the same matrix you
started with.

You need this type of matrix to use as a base to create other matrices.

Using Matrices to Transform Vertices
Now here’s the great thing. A point in space (for example, x, y) can be represented
as a matrix.

Don’t worry about the third element (the 1) for now. Just be assured it has to be
there for this to work.

Because you can represent a point as a matrix, it’s possible to multiply it with an-
other matrix and perform transformations. Let’s go through the three transforma-
tions and see exactly how it’s done.
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Translation

Remember how you translated a point in the last section? You added the distance
dx, dy to its x and y coordinates to get the new point, like this:

newX = x + dx

newY = y + dy

So, to do the same thing with a matrix, you create a translation matrix, which looks
like this

and then multiply it with your point x, y. This is what the whole thing looks like:

I hope you can see why the 1 needed to be added to the x and y coordinate to
create the matrix which represents the point. This allows the translation factors to
be part of the final sum.

Scaling

This is the transformation matrix, which performs scaling by sx in the x-axis and sy
in the y-axis:

To give you an example, do you remember how I showed you how to scale a point in
the last section?

newX = x × sx

newY = y × sy
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You end up with exactly the same equations by using the scale matrix on a point x, y:

Getting the hang of it? Great, let’s move on to the most complicated transforma-
tion: rotation.

Rotation

To perform rotation using a matrix, you need to create a matrix that will re-create
the rotation formula in the “Rotation” section dealing with vertices.

newX = oldX × cos(theta) - oldY × sin(theta)

newY = oldX × sin(theta) + oldY × cos(theta)

The matrix that does this job looks like this:

As you can see, when you multiply a point x, y by this matrix, you end up with a
correctly rotated point.

Now for the Magic Part
Here’s the great thing about matrices: If you have a series of transformations, you
can create a matrix for each one and then combine all those matrices into one
transformation matrix, which you can use on all your points. To combine matrices,
you multiply them together. Just as before, the order in which you perform the
multiplication is important. Here are the stages in creating and using a transforma-
tion matrix.

1. Create an identity matrix.

2. Create a scale matrix and combine it with the matrix created in Step 1.
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3. Create a rotation matrix and combine it with the result from Step 2.

4. Create a translation matrix and combine it with the result from Step 3.

5. Use the matrix you ended up with in Step 4 on each vertex in your shape.

Actually, the steps for rotation and scaling may be interchanged, but the rest of the
steps must be in that order or you’ll end up getting some pretty weird results!

I’ve changed the code in the last example to use matrix transformations. You can find
it in the Chapter6/Shape Manipulation with Matrices folder. If you load the project
into your compiler, you’ll notice I have defined a matrix class, C2DMatrix, to do all the
matrix calculations. The CGun::WorldTransformation function now looks like this:

void CGun::WorldTransform()

{

  //copy the original vertices into the buffer about to be transformed

  m_vecGunVBTrans = m_vecGunVB;

  //create a transformation matrix

  C2DMatrix matTransform;

When you create an instance of a C2DMatrix, it’s initially just an identity matrix that
provides a base for creating the transformations required.

  //scale

  matTransform.Scale(m_dScale, m_dScale);

To scale an object use the Scale method, which requests x and y scaling factors.
Because the gun object uses the same scaling factor for both axes, I’ve entered
m_dScale for both.

  //rotate

  matTransform.Rotate(m_dRotation);

  //and translate

  matTransform.Translate(m_dPosX, m_dPosY);

  //now transform the ships vertices

  matTransform.TransformSPoints(m_vecGunVBTrans);

}

The last method, TransformSPoints, takes a reference to a vector of SPoints and
multiplies them with the combined transformation matrix.
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As you can see, in addition to being a piece of cake to use, the matrix class is much
faster and more convenient than the transformation methods used in the previous
Shape Manipulation code.

Now that you have matrices under your belt, I’m going to spend some time talking
about another indispensable tool for game programmers: vectors.

What’s a Vector?
Before I move on to vectors, let’s take a quick look at what a point is again. Figure
6.8 shows a point, p, represented in 2D space at coordinate (3, 4).

Figure 6.8

A point in 2D space.

And that’s all a point is—just a place in space. No more, no less.

A vector (although its notation may look just like a point) gives you a lot more
information. A vector represents a magnitude and a direction. So, for example, the
same point, p (3, 4), represented as a vector looks like Figure 6.9.

Let’s look at it another way to make absolutely sure you know what a vector repre-
sents. Say you are programming a Red Alert type game and there’s a tank unit
motoring around the map. Its velocity and direction can be represented by a vector.
The direction the vector is pointing is the direction the tank is heading, and the
magnitude (the length) of the vector represents its speed. The greater the magni-
tude, the faster the tank is traveling.
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In my code samples, I’ll be using 2D vectors, which are given by two coordinates, x
and y, just like a point in 2D space. The definition of the vector structure I use looks
very similar to the SPoint structure discussed earlier:

struct SVector2D

{

  double x, y;

  SVector2D(double a = 0.0f, double b = 0.0f):x(a),y(b){}

};

If you’re working in 3D however, you would add a third dimension—the z–dimen-
sion—just as if you were representing a point in 3D space. As you can see, you only
need one point in space to define a vector, because the other end of the vector is
always assumed to be at the origin (0, 0).

Okay, so now that you know what a vector is, let’s look at some of the things you can
do with them.

Adding and Subtracting Vectors
Imagine you found a treasure map (if only… <smile>), but instead of the usual
…from the palm tree walk three paces east, then walk six paces northeast, twelve paces north-
west… you have a list of instructions to follow, like this:

To find the treasure, from the palm tree follow the vectors (3, 1), (-2, 4), (6, -2), (-2, 4).

The map shown in Figure 6.10 shows the route you would take to find the treasure.

Figure 6.9

A vector in 2D space.

What’s a Vector?
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Figure 6.10

A treasure map using vectors.

The great thing about vectors is, instead of following four individual vectors, you
can add them up and follow just one vector to the treasure. To add vectors, you add
all the x components and then all the y components (and all the z components if
you are working in 3D). Therefore, the new vector is found like so:

New x = 3 + (-2) + 6 + (-2) = 5

New y = 1 + 4 + (-2) + 4 = 7

So, all the vectors added together give you the new vector (5, 7), which takes you
straight to the treasure, as shown in Figure 6.11, beating all the competition to the loot!

Figure 6.11

A smart use of vector addition.
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To subtract vectors, you do exactly the same except, well… you subtract the compo-
nents instead of adding them.

Interesting Fact
There is a species of ant that lives in a hole in the desert. These ants forage by ran-
domly selecting a direction, walking in a straight line for a period of time, then selecting
another direction and following that for a while. This continues until the ant finds food.
By this time, it may be some distance (in ant terms) away from the protection of its
hole—sometimes as far as many hundreds of feet.

The incredible thing about this ant is as soon as it discovers food, it returns to its hole
in a straight line. So, what this clever little insect is doing is summing up the series of
vectors it has walked and then inverting the summed total to calculate the way home. I
bet you never knew ants could do math, eh?

Calculating the Magnitude of a Vector
Now that you’ve found the treasure, let’s say you want to know how far away the
chest is from the palm tree. To determine that, you need to calculate the magnitude
(the length) of the vector.

The magnitude of a vector is easily calculated by using Pythagoras’s famous equa-
tion. Therefore, the length AB in Figure 6.12 is determined by:

Figure 6.12

Calculating the magnitude of a vector.

What’s a Vector?
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Slotting in the numbers gives you:

So, you know the length from the palm tree to the treasure is 8.6023 units.

Multiplying Vectors
To multiply a vector by a number, you simply multiply each of the vector’s compo-
nents by that number. So, to multiply the vector (1, 2) by 4.

(1, 2) x 4 = (4, 8)

You get a vector heading in the same direction, but it is four times longer than it
was before the multiplication, as shown in Figure 6.13.

Figure 6.13

Vector multiplication.

Normalizing Vectors
A normalized vector is a vector with a magnitude that is always 1.0. A normalized vector
is also referred to as a unit vector. To create a normalized vector, you divide each
component of the vector by the magnitude of the vector. That way you have a vector
which is pointing in the same direction as the original but now has a length of 1.0.

For example, take the vector V = (3, 4). The length is calculated as:
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Now that the length is known, divide
each component of the vector by this to
get the normalized vector:

3/25 = 0.12 and 4/25 = 0.16

Therefore, the normalized vector, N, is
determined by N = (0.12, 0.16).

Normalized vectors have some very
useful properties, the first of which I’ll
be talking about in a moment.

Resolving Vectors
One really cool thing you can do with
vectors is to resolve the magnitude into its
respective x and y components. Let me
show you what I mean. Imagine a car
traveling at 50 kph in the direction
shown in Figure 6.14.

TIP
Mathematicians usually denote a
vector using boldface uppercase
letters like so, V. The length of the
vector is denoted by enclosing the
vector within two vertical bars like
this, |V|. Therefore, the normalized
vector, V, may be written as:

Occasionally, you may see a normal-
ized vector referred to in lowercase
or with an asterisk by the side. So…

V normalized may be written as v
or as V*.

Figure 6.14

A velocity vector.

What’s a Vector?
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You can split the velocity vector into two separate vectors representing how fast the
car is traveling in the x direction and how fast the car is traveling in the y direction.
These are known as the x and y components of the vector. From trigonometry, you
know that in a right-angled triangle:

cos(angle) = adjacent/ hypotenuse

sin(angle) = opposite/ hypotenuse

In this example, the angle is 30 degrees and the hypotenuse is represented by the
magnitude of the vector (the speed of the car), 50 kph. The x and y components
you are trying to find represent the adjacent and opposite sides. So, applying the
preceding equations, you can say that:

The x component = 50 × cos(30) = 43.3 kph

The y component = 50 × sin(30) = 25 kph

And Bingo! You now know that in one hour the car will have traveled 25 klicks
along the y-axis and 43.3 klicks along the x-axis. Being able to resolve vectors like
this is incredibly useful for all sorts of stuff. Let me show you how you would use this
technique in a game.

Imagine you are designing a tank battle game. A user controlled tank’s position is
represented by a SVector2D structure and its rotation by a double.

SVector2D vTankPos;

double    dTankRotation

When the user steps on the gas, you want to be able to apply a velocity of 10 kph in
the direction the tank is facing. To do that, you resolve 10 kph into its x and y
components and then add the respective component to the appropriate component
of the tank’s position to get the updated position for the next frame. The code
would look like this:

double xComponent = 10*cos(dTankRotation);

double yComponent = 10*sin(dTankRotation);

vTankPos.x += xComponent;

cTankPos.y += yComponent;

I’ll be using this technique quite a lot in the rest of the code projects, as you will see.

The Magical Marvelous Dot Product
The dot product of two vectors is a fantastic thing because it gives you the angle
between two vectors—something you require often when programming games.
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Given two vectors, U and V, the dot product can be calculated using either of the
following two equations:

or

Wait a moment! You said the dot product is used to give me the angle between the vectors.
Looks to me like in the second equation you need the angle to get the dot product! What’s
going on?

Ah well, that’s a very good question. But here’s the magic. Remember, |V| simply
means the magnitude of the vector, V? Now, because you’ve just learned how to
normalize the vector—in other words, to make its length 1—the second equation
simply boils down to the following, if you normalize the vectors first.

So slotting equation 1 into equation 2, you get this lovely formula.

And Hey Presto!! You now know how to calculate the angle between two vectors.

The SVector2D Helper Utilities
I have written some code to help with 2D vector operations. You can find the code
in the SVector2D.h file, which is present in almost all code projects from here
onward. If you examine the source, you’ll find that I’ve overloaded the operators so
that vectors can be easily multiplied, divided, added, or subtracted. There are also
functions to perform the most useful vector operations, as follows:

inline double Vec2DLength(const SVector2D &v);

inline void Vec2DNormalize(SVector2D &v);

inline double Vec2DDot(SVector2D &v1, SVector2D &v2);

inline int Vec2DSign(SVector2D &v1, SVector2D &v2);

The last function, Vec2DSign returns 1 if v2 is clockwise from v1, and -1 if
anticlockwise. As you will discover, this can be a useful little function at times.

The SPoint structure is also defined in the SVector2D file. In general, I use SPoints
for vertices and SVector2Ds for things like velocities and object positions.

What’s a Vector?
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What a Clever Chap That Newton
Fellow Was
As games become more sophisticated and the environments they take place in
become more realistic, the more educated programmers have to become. Nowa-
days, not only do you have to know how to code, you also need to know a combina-
tion of artificial intelligence methods, mathematics, fast algorithms and data struc-
tures for 3D graphics, such as BSP (Binary Space Partition) trees, texture mapping
and manipulation, and fast collision detection techniques. However, programming
something that feels real is impossible, even with all the preceding techniques, if
you don’t use physics.

So what is physics? My dictionary defines it as

The science of matter and energy and of the interactions between the two.

The rules of physics are the rules that define the behavior of everything in our
universe—the way the wind plays with fields of corn, the orbits of the planets
around the sun, and the reason water spins like a tornado when it falls through the
hole in your shower basin. To know physics is to know the world around you.

When you learn how to program physics into your game world, that world starts to feel
real in addition to looking real. Objects move as they should, cars slide convincingly
around corners, bullets and missiles make beautiful trajectories through the air, particle
smoke rises and swirls just like real smoke, and objects can “feel” heavy or light.

Physics is a very large subject. In addition to other topics, physics is comprised of
the following:

■ Mechanics
■ Kinematics
■ Dynamics
■ Optics
■ Electricity and magnetism
■ Acoustics
■ Thermodynamics
■ Atomic particles
■ Quantum phenomena

Because the lunar lander in the project for this chapter is moving and because it is
affected by gravity, I’ll be limiting the physics I show you to just that—the physics of
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motion and gravity. First, a definition of the basic units scientists use to measure
physical objects and actions is required.

Time
Time is abstract and hard to define. It has a slippery quality; sometimes it seems to
go fast, sometimes slow. Some philosophers even think time doesn’t really exist and
is just a figment of our imagination. (Try that one with your boss the next time
you’re late for work!) Scientists have also shown that creatures with different me-
tabolisms perceive time differently. If mice wore wristwatches, you would have a
hard time synchronizing your own with it, because the tiny hands would be whip-
ping around much faster than the ones on your own.

Physicists however, have to measure time accurately, and to do that, they must
define exactly what a unit of time is. They require a standard. The name they gave to
the unit of time is the second and it is defined as—get ready for it…

The duration of 9,192,631,770 periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the cesium 133 atom.

Wow! I bet that makes everything much clearer now! Seriously though, you don’t
have to worry about what a second actually is as long as everyone uses the same
definition. When programming games, you are usually working in time units that
are fractions of a second because your code will be doing calculations for each frame
update and most games run at a minimum of 30 frames per second.

Interesting Fact
Not so long ago, before the invention of railways, not only did different countries
operate on different timescales, but different towns and villages did too! You could set
your watch in London, but by the time you reached Oxford in your rickety carriage,
the time would be many minutes different. This must have been very strange—having
to set your watch each time you traveled a few miles—but nevertheless, this is what
the world was like back then.

Length
The standard unit of distance is the meter. Until fairly recently, it was defined as the
distance between two etched lines on a metal bar kept in some research institute.
Nowadays, physicists like a more accurate representation, so a meter is now defined as:

The distance traveled by light in a vacuum over a period of (1/299792458) seconds.

What a Clever Chap That Newton Fellow Was
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When designing computer games, distance is usually measured in arbitrary units
that are related to the resolution of the graphics display.

Mass
Mass is the measure of an amount of something. This is a tricky quality to measure
correctly because you have to calculate the mass of an object by weighing it, and yet
mass is not a unit of weight; it is a unit of matter. Weight is a measurement of how
much force gravity is exerting upon something.

The force of gravity acting upon the paperweight sitting in front of me is different
in different places. It would weigh a lot less on the moon, for example. And because
the earth is not exactly spherical and because it contains mountain ranges and
different densities of rock, it would weigh different amounts in different places on
Earth. But wherever it’s located, the paperweight would always have the same mass.

Again, scientists need a standard, and what they came up with was this: Some-
where in France, in Paris I believe, is a metal cylinder made out of an exotic
platinum-iridium alloy. This cylinder has been agreed upon by physicists to be
THE kilogram. That is, the kilogram by which everything else is measured. If you
were a scientist and you wanted your own version of the kilogram, you would go to
France and have a duplicate made which weighs (on incredibly accurate scales)
exactly the same as THE kilogram. You would then enjoy the sights, have a few
bottles of wine, and fly back home. Now, even if the gravity in your place of the
world is different from that in Paris, you would know that your kilogram still has
exactly the same mass as THE kilogram.

Once you have a definition of force, you can do away with any reference to gravity
when measuring mass.

Force
Here is the definition of force, as Newton put it:

An impressed force is an action exerted upon a body in order to change its state, either of
rest, or of uniform motion in a right line.

So, a force is anything that can alter an object’s speed or line of motion. Some
forces are extremely obvious, such as the force a soccer player uses to kick a ball,
the force your toaster makes to pop up the toast, and the force you feel when you
use an elevator. Other forces are less obvious because they can cancel each other
out, and therefore, although forces are being exerted, that object may not move.
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For example, the force exerted by gravity upon an apple sitting on a table is can-
celed out by the force the table is exerting upon it in the opposite direction. See
Figure 6.15.

This concept—of the table exerting an upward force—seems strange at first, but it’s
real nevertheless.

The unit of force is the newton, named after the great man himself. A newton is
defined as:

The force required to make a one kilogram mass move from rest to a speed of one meter
per second.

You can now use this definition of force to define mass, without having to resort to
referring to gravity. For example, if it takes 3 newtons to get my paperweight mov-
ing at a speed of 1 m/s, then my paperweight must (by the definition of a newton)
have a mass of 3 kilograms. Voilá! Everything is neat and tidy.

Motion—Velocity
Velocity is the rate of change of position of an object with respect to time and is normally
measured in meters per second (m/s). If you are traveling in a car however, your
velocity is measured in mph or kph. The velocities of game objects are normally
calculated in pixels per second.

If you know how long a car has been moving, and you know its average speed, it’s easy
to calculate how much distance the car has covered in that time using the equation:

New Position = Old Position + Velocity × Time

For example, look at the car in Figure 6.16.

Figure 6.15

Forces acting upon a stationary body.

Figure 6.16

A speeding car.

What a Clever Chap That Newton Fellow Was
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If the car has been traveling for two
hours, the distance between p1 and p2 is
calculated as:

distance = 0 + 80 × 2 = 160 miles

Motion—
Acceleration
Velocity is the rate of change of distance,
but acceleration is the rate of change of
velocity and is measured in meters per
second. (m/s2).

To elaborate, if the car in Figure 6.16
starts at rest and then accelerates at a
constant acceleration of 5 m/s2, then
every second an additional 5 m/s will be
added to its velocity, as shown in Table 6.1.

Figure 6.17 shows this information plotted onto a graph.

NOTE
This brings me to another point:
where exactly are the points p1 and
p2? Are they at the front of the car,
at the back, on the roof?

Well, when measuring the position
of an object, it’s usually measured at
the center of mass of that object. The
center of mass of an object can be
thought of as the balance point of
the object. If you could manage to
balance a car on your finger, the
center of mass would lay directly
above your fingertip.

Figure 6.17

A car traveling with constant acceleration.

A good example of something traveling with constant acceleration is a falling rock,
which travels at a constant acceleration because the only force acting upon it is the
Earth’s gravity.
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Objects can also travel at a non-constant acceleration. For example, a drag racer might
produce a graph which looks a little like Figure 6.18. This shows a rapid increase in
speed at the beginning of the graph but then gradually trails off as the acceleration falls.

Table 6.1 Velocity Due to Acceleration

Time(s) Acceleration m/s2 Velocity(m/s)

1 5 5

2 5 10

3 5 15

4 5 20

5 5 25

To calculate the distance an object has traveled if it is moving with a constant
acceleration, a, for a time, t, you use the following equation:

Distance traveled =

Figure 6.18

Non-constant acceleration.

What a Clever Chap That Newton Fellow Was

where u is the starting velocity of the object.
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So, to use the earlier example of a car
traveling from rest with acceleration 5
m/s2 for 5 seconds, you can now calcu-
late how far it has traveled by slotting the
numbers into the equation:

Distance traveled = 0 × 5 + _ 5 × 5 × 5
= 62.5 meters

Feel the Force, Luke
You learned earlier that force is an
action exerted upon a body and that it’s
measured in newtons. Now I’m going to show you the relationship between force,
mass, and acceleration.

Force = Mass × Acceleration

As you can see, the force exerted on an object is in proportion to its mass and its
acceleration. This is why you feel a force pushing you back into your seat when the
airplane you’re in takes off. This is a very important equation in physics and you’ll
find yourself using it a lot, especially when written in the following form:

Acceleration = Force/Mass

Because now, given a game object’s mass and the force exerted upon it (like the
thrust of a spacecraft, for example), it’s easy to calculate the acceleration and
update the object’s velocity and position accordingly. In each frame of your game,
you would do something like this:

NewAcceleration = OldAcceleration + (Force/Mass)

NewVelocity = OldVelocity + NewAcceleration × FrameTime

NewPosition = OldPosition + NewVelocity × FrameTime

The frame time is the time which has elapsed between the current frame and the
preceding frame.

Gravity
Gravity is the force of attraction between two objects. It is the force which stops us
from spinning off into space, the force which makes the planets orbit around the sun,
and the force which creates the earth’s tides. Gravity is everywhere; there is even a
force exerted from your own body mass onto this book, albeit a very small one.

NOTE
Although the letter a is normally used
to represent acceleration, the accel-
eration due to gravity is represented
using a “g”. That’s why you hear jet
fighters saying stuff like “Wow man, I
pulled eight g’s back there!”

g, on Earth, averages out to around
9.8 m/s2.
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Although nobody really knows what gravity is, fortunately Newton figured out an
equation for calculating it. Given two objects, as in Figure 6.19, one with mass m,
the other with mass M, and a distance between them of r, the equation to calculate
the gravitational force between them is this:

Where G is the gravitational constant 6.673 x 10-11

So, how much force is exerted is proportional to the masses of the objects and is
inversely proportional to the square of the distance between them. As an experi-
ment, let’s use this equation to calculate the mass of the earth. First, imagine a
tennis ball with mass m sitting on the world (with a mass M).

Because you know force exerted on an object is equal to its mass times its accelera-
tion (F = ma), you can replace the F in the preceding equation, like so:

Figure 6.19

Gravitational forces.

The small m’s cancel each other out, resulting in:

And using algebra, you can shuffle the equation around until you get an equation
for the earth’s mass:

What a Clever Chap That Newton Fellow Was
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Now, all you need to do is pop in some numbers. You know what a is because that’s
the acceleration due to gravity, g (approximately 9.8 m/s2. G is the gravitational
constant (6.673 x 10-11), and the value r is the same as the earth’s radius (6378000 m),
because the ball’s radius is negligible in comparison. This gives you:

Tah Dah! If you look up the earth’s mass in an encyclopedia, you’ll see that the
equation worked perfectly (given that you only used approximate figures, of course).

The Lunar Lander Project—Manned
Well, now that you’ve learned all the clever stuff required to understand how the
objects in the game are created, displayed, and moved around in a realistic way, let
me take you through the lunar lander code project. You can find all the code in the
Chapter6/Lunar Lander—Manned folder on the CD. Take a well-deserved break
before you move on and play with the executable; see if you can safely land the
lander. It’s not easy is it?

The two classes of interest in the project
are CLander and CController. CLander is
like a more complex version of the CGun
class I described earlier. It holds all the
information you need to know about a
lunar lander object and its vertices.
CController is a class that acts as an
interface between windows and the
lander class. It also takes care of the landing pad shape and the stars.

Let’s take a look at the header for CController first.

The CController Class Definition
A global pointer to a CController class instance is initialized in WM_CREATE and then
called where appropriate (see comments in main.h) to render and update the
scene.

class CController

{

NOTE
To control the lander, use the
cursor keys to rotate the ship left
and right, and the spacebar to
thrust. Good luck!
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private:

  //this is the lander the user can control

  CLander*        m_pUserLander;

  //true if we have successfully landed

  bool            m_bSuccess;

  //vertex buffer for the stars

  vector<SPoint>  m_vecStarVB;

  //vertex buffer to store the landing pads vertices

  vector<SPoint>  m_vecPadVB;

  //position of the landing pad

  SVector2D       m_vPadPos;

  //keeps a record of the window size

  int             m_cxClient,

                  m_cyClient;

  void WorldTransform(vector<SPoint> &pad);

  void RenderLandingPad(HDC &surface);

public:

  CController(int cxClient, int cyClient);

  ~CController();

  //this is called from the windows message loop and calls

  //CLander::CheckForKeyPress() which tests for user input

  //and updates the lander's position accordingly

  bool  Update();

  //initialize a new run

  void  NewRun();

  //this is called from WM_PAINT to render all the objects

The Lunar Lander Project—Manned
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  //in our scene

  void  Render(HDC &surface);

};

Mapping Modes
The mapping mode is the way the GDI is configured to plot coordinates. Normally this
means coordinates are plotted on a window which has a downward pointing y-axis.
Because this sample project is all about the effects of gravity and flight, using the
default Window’s mapping mode is counter intuitive. What’s needed is a y-axis that
increases as it moves upward so that the lunar module’s height is plotted correctly. If
the default mapping mode is used, then as the lander’s height is increased, the lower
down in the window it would be drawn! Fortunately, Windows let’s you define your
own way of mapping coordinates to the screen. Here’s how you change the mapping
mode so that the y-axis points upward:

SetMapMode( surface, MM_ANISOTROPIC );

SetViewportExtEx( surface, 1, -1, NULL );

SetWindowExtEx( surface, 1, 1, NULL );

SetViewportOrgEx( surface, 0, m_cyClient, NULL );

I’m not going to go into the details of each of these functions, but if you’re interested,
look them up in your documentation. You will likely find, however, that having the
choice of which way your y-axis points is adequate for most tasks, so you will probably
never need to use any other mapping modes.

To restore the mapping mode, you use this sequence of function calls:

SetMapMode( surface, MM_ANISOTROPIC );

SetViewportExtEx( surface, 1, 1, NULL );

SetWindowExtEx( surface, 1, 1, NULL );

SetViewportOrgEx( surface, 0, 0, NULL );

The CLander Class Definition
The CLander class keeps a record of everything you need to know about the lander
and has methods for rendering the lander shape, getting input from the user, and
updating the physics. The header file for the CLander class is as follows. The com-
ments included within the code should be enough to give you the gist of the class.

class CLander

{
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private:

  //position in world

  SVector2D           m_vPos;

  //rotation in the world

  double              m_dRotation;

  //the ships mass.

  double              m_dMass;

  //and velocity

  SVector2D           m_vVelocity;

  //need to know where the landing pad is for collision detection

  SVector2D           m_vPadPos;

  //buffer to store the ships vertices

  vector<SPoint>      m_vecShipVB;

  //scaling factor for rendering the ship

  double              m_dScale;

  //buffer to hold our transformed vertices

  vector<SPoint>      m_vecShipVBTrans;

  //and the jets vertices

  vector<SPoint>      m_vecJetVB;

  vector<SPoint>      m_vecJetVBTrans;

  //we use this to determine whether to render the ship's jet or not

  //(if the user is pressing thrust then the jet is rendered)

  bool                m_bJetOn;

  //local copy of client window size

  int                 m_cxClient;

  int                 m_cyClient;

  //used to flag whether or not we have already tested for success

The Lunar Lander Project—Manned
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  //or failure

  bool                m_bCheckedIfLanded;

  //returns true if the user has satisfied all the conditions for landing

  bool    LandedOK();

  //tests if any vertex of the ship is below the level of the landing

  //platform

  bool    TestForImpact(vector<SPoint> &ship);

  //this function transforms the ships vertices so we can display them

  void WorldTransform(vector<SPoint> &ship);

public:

  CLander(int       cxClient, //so we can keep a local record

          int       cyClient, //of the window dimensions

          double    rot,      //starting rotation of lander

          SVector2D pos,      //starting position of lander

          SVector2D pad);     //landing pad position

  void Render(HDC surface);

  //resets all relevant variables for the start of a new attempt

  void Reset(SVector2D &NewPadPos);

  //updates the ship from a user keypress

  void  UpdateShip();

};

The UpdateShip Function
You now know how to create a lunar lander and render it to the screen, but I
haven’t shown you how input is received from the user and how its position and
velocity are updated. This is all done in the UpdateShip function. This is a summary
of what the update function needs to do each frame:

■ Test to see if the user is pressing a key
■ Update the lander’s velocity, acceleration, and rotation accordingly
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■ Update the lander’s position
■ Transform the lander’s vertices
■ Test to see if any of the lander’s vertices are below “ground” level
■ If the lander has reached ground level, test for success or failure

And now let me talk you through the code which does all that:

void CLander::UpdateShip(double TimeElapsed)

{

The first thing to notice is that this function is called with the time elapsed since the
last frame. This is done because although you can set the timer for a fixed number
of frames per second, as all the examples have done so far in this book, you can run
into problems. For example, if the framerate is set at 60 fps and then the program is
run on a machine much slower than your own overclocked-ninja-hardware-acceler-
ated-monster of a machine, the slower machine may not be able to do 60 fps. It may
only be able to do 40. If this was the case, then all the physics calculations would be
messed up and the spaceship/racing car/tank would handle completely differently
on machines incapable of the fixed framerate. Because this is undesirable, it’s much
safer to calculate the physics using the time elapsed from the last frame. This is easy
to calculate because the CTimer class already has a method to do this for you—
cunningly named GetTimeElapsed.

  //just return if ship has crashed or landed

  if (m_bCheckedIfLanded)

  {

    return;

  }

If the program has detected that the ship has landed (in the TestForImpact func-
tion), then m_bCheckedIfLanded is set to true and the update function simply returns
without doing anything.

  //switch the jet graphic off

  m_bJetOn = false;

Whenever the user presses the thrust key (the spacebar), a little graphic of a thrust
jet is drawn beneath the lander module. This flag is set on or off to indicate
whether the graphic should be drawn in the render function.

  //test for user input and update accordingly

  if (KEYDOWN(VK_SPACE))

  {

The Lunar Lander Project—Manned
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    //the lander's acceleration per tick calculated from the force the

    //thruster exerts, the lander's mass and the time elapsed since the

    //last frame

    double ShipAcceleration = (THRUST_PER_SECOND * TimeElapsed) / m_dMass;

    //resolve the acceleration vector into its x, y components

    //and add to the lander's velocity vector

    m_vVelocity.x += ShipAcceleration * sin(m_dRotation);

    m_vVelocity.y += ShipAcceleration * cos(m_dRotation);

    //switch the jet graphic on

    m_bJetOn = true;

  }

When the spacebar is pressed, the
correct amount of acceleration due to
thrust must be calculated and applied to
the lander. First, the acceleration is
calculated from the force applied to the
ship’s mass during this time slice (Accel-
eration = Force / Mass). The accelera-
tion vector is then resolved into its x and
y components, as discussed earlier, and
added to the relevant component of the
ship’s velocity.

    if (KEYDOWN(VK_LEFT))

    {

      m_dRotation -= ROTATION_PER_SECOND * TimeElapsed;

      if (m_dRotation < -PI)

      {

        m_dRotation += TWO_PI;

      }

    }

    if (KEYDOWN(VK_RIGHT))

    {

NOTE
Rather than checking for key presses
in the WindowProc, I’m using the
alternative method I described in
Chapter 1, “In the Beginning, There
Was a Word, and the Word Was
Windows.” To make my life easier, I
defined a macro you can find at the
top of the CLander.cpp file like this:

#define KEYDOWN(vk_code)

((GetAsyncKeyState(vk_code) &

0x8000) ? 1 : 0)
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      m_dRotation += ROTATION_PER_SECOND * TimeElapsed;

      if (m_dRotation > TWO_PI)

      {

        m_dRotation -= TWO_PI;

      }

    }

    //now add in the gravity vector

    m_vVelocity.y += GRAVITY * TimeElapsed;

   //update the lander's position

   m_vPos += m_vVelocity * TimeElapsed * SCALING_FACTOR ;

Here, the lander module’s velocity is updated according to the laws of physics. The
important thing to notice here is the value SCALING_FACTOR. The reason that this
constant is present is to make the game more fun. Let me show you what I mean…

As I mentioned earlier in the section on physics, when programming a game, units
of distance are measured in pixels and not in meters. The lunar lander starts its
descent approximately 300 pixels above the landing pad, so this represents 300
meters in the real world. Let’s do the calculation to see how long it would take for
the lander to reach the pad, falling 300 meters under the influence of the moon’s
gravity (1.63 m/s2).

From the equation

u (the start velocity ) is zero, so you can simplify to

and then shuffle using a bit of algebra.

Putting in the numbers gives you

The Lunar Lander Project—Manned
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a time of over 19 seconds to reach the pad. In this case, 19 seconds is just too long.
It would be boring (take the scaling off and try it to see just how tedious it is!). So,
to compensate, a scaling factor is introduced. In effect, this is equivalent to the
lander starting its descent from a lower altitude. The physics remain exactly the
same, but now the lander is much more fun to control.

Moving back to the update function:

  //bounds checking

  if (m_vPos.x > WINDOW_WIDTH)

  {

    m_vPos.x = 0;

  }

  if (m_vPos.x < 0)

  {

    m_vPos.x = WINDOW_WIDTH;

  }

These few lines of code make sure the lander module wraps around the screen if it
flies too far left or right.

Now, the following tests if the lander has crashed or made a successful landing.

  //create a copy of the lander's verts before we transform them

  m_vecShipVBTrans = m_vecShipVB;

  //transform the vertices

  WorldTransform(m_vecShipVBTrans);

Before a test can be made to see if the ship has reached “ground” level or not, its
vertices have to be transformed into world coordinates.

  //if we are lower than the ground then we have finished this run

  if (TestForImpact(m_vecShipVBTrans))

  {

TestForImpact is a function which tests all the ship’s vertices to find if any are below
the ground plane. If a vertex is found to be below the ground, the program checks
to see if the module has landed gracefully or crashed like an albatross.

    //check if user has landed ship

    if (!m_bCheckedIfLanded)

    {
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      if(LandedOK())

      {

        PlaySound("landed", NULL, SND_ASYNC|SND_FILENAME);;

      }

      else

      {

        PlaySound("explosion", NULL, SND_ASYNC|SND_FILENAME);

      }

      m_bCheckedIfLanded = true;

    }

  }

  return;

}

LandedOK is a function which tests if the lander module has satisfied all the require-
ments for a successful landing. The UpdateShip function then plays an appropriate
wav file and returns.

This is what the LandedOK function looks like:

bool CLander::LandedOK()

{

  //calculate distance from pad

  double DistFromPad = fabs(m_vPadPos.x - m_vPos.x);

  //calculate speed of lander

  double speed = sqrt((m_vVelocity.x * m_vVelocity.x)

                     +(m_vVelocity.y * m_vVelocity.y));

  //check if we have a successful landing

  if( (DistFromPad            < DIST_TOLERANCE)       &&

      (speed                  < SPEED_TOLERANCE)      &&

      (fabs(m_dRotation)      < ROTATION_TOLERANCE))

  {

    return true;

  }

  return false;

}

The Lunar Lander Project—Manned
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All the tolerances for a successful landing can be found in defines.h. As you can see,
for a landing to be successful, the lander has to be flying below SPEED_TOLERANCE
speed, be less than DIST_TOLERANCE away from the center of the pad, and have a
rotation of less than ROTATION_TOLERANCE.

Now that you have learned how to fly a lunar lander (you did manage to land it,
didn’t you?), let’s look at how a genetic algorithm can be programmed to control a
spacecraft.

A Genetic Algorithm Controlled
Lander
As with all genetic algorithms, the secret of solving the lunar lander control prob-
lem lies in correctly defining these three things:

■ The encoding of candidate solutions
■ Meaningful mutation and crossover operators
■ A good fitness function

Once you have these steps sorted, you can leave the rest of the work to the magic of
evolution. So, let’s look at each step in turn. First, the encoding…

Encoding the Genome
You have already seen how candidate solutions may be encoded as binary bit strings
or as permutations of integers, and you may have already guessed that you can just as
easily encode some problems as a series of real numbers. What is not so obvious,
though, is that it’s possible to encode candidate solutions anyway you like as long as the
genes are consistent and you can figure out mutation and crossover operators for
them. You can even use complex data structures as genes, and I’ll be showing you how
to do that toward the end of the book. For now though, the important thing to note is
that you must ensure that crossover and mutation operators can be applied in a way
that is meaningful to the problem. So then, how do you encode the lander problem?

As you have seen, the lander may be controlled in four different ways:

■ You can apply thrust.
■ You can apply a rotational force to the left.
■ You can apply a rotational force to the right.
■ You can do nothing (drift).
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Each of these four controls is applied for a certain period of time, which is mea-
sured in the fraction of a second it takes to update each frame. Therefore, an
encoding has to be found that incorporates both an action and a duration. Figure
6.20 shows how the data is encoded. As you can see, each gene contains a data pair.
The first half of the gene indicates the action the ship should take, and the second
half indicates how long that action should be undertaken.

If you look in defines.h, you will find that the maximum duration an action can be
undertaken per gene is #defined as 30 ticks (frames) in MAX_ACTION_DURATION.

Here’s how the gene structure looks in code:

//first enumerate a type for each different action the Lander can perform

enum action_type{rotate_left,

                 rotate_right,

                 thrust,

                 non};

struct SGene

{

  action_type action;

  //duration the action is applied measured in ticks

  int         duration;

  SGene()

  {

    //create a random move

    action = (action_type)RandInt(0,3);

    duration = RandInt(1, MAX_ACTION_DURATION);

Figure 6.20

Genome encoding.

A Genetic Algorithm Controlled Lander
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  }

  SGene(action_type a, int d):action(a), duration(d){}

  //need to overload the == operator so we can test if actions are

  //equal (used in the crossover process of the GA)

  bool operator==(const SGene &rhs) const

  {

    return (action == rhs.action) && (duration == rhs.duration);

  }

};

Now that you have a way of encoding the genes, it’s a straightforward process to
define the genome:

struct SGenome

{

  vector<SGene> vecActions;

  double        dFitness;

  SGenome():dFitness(0){}

  SGenome(const int num_actions):dFitness(0)

  {

    //create a random vector of actions

    for (int i=0; i<num_actions; ++i)

    {

      vecActions.push_back(SGene());

    }

  }

  //overload '<' used for sorting

  friend bool operator<(const SGenome& lhs, const SGenome& rhs)

  {

    return (lhs.dFitness < rhs.dFitness);

  }

};

Assuming the genetic algorithm commences with an initial population of random
genomes—that is to say a random string of actions and durations—it’s easy to see
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how each action can be applied in turn for the indicated amount of time, and
therefore, control the spacecraft. It’s almost certain that most of the genomes will
perform terribly—a bit like sending up the space shuttle with a turnip at the con-
trols—but a few will perform better than the rest. And as you know by now, that’s all
you need to get the ball rolling.

Crossover and Mutation Operators
Because you’ve not seen it in action yet, and because it appears to perform slightly
better than single point crossover in this example, I’ve used multi-point crossover
for this code project. Just in case you’ve forgotten, multi-point crossover works by
stepping through each gene in the genome and swapping them at random. Refer to
Figure 5.8 in Chapter 5, “Building a Better Genetic Algorithm,” if your memory
needs to be jogged.

The mutation operator runs down the length of a genome and alters the genes in
two parts. First, depending on the mutation rate, the operator will change the
action to another random action (this could mean the action remains the same).
Second, the mutation operator may change the duration of the action by an
amount not exceeding MAX_MUTATION_DURATION. The duration is also bounded between
zero and MAX_ACTION_DURATION.

Here is the code for the mutation operator:

void CgaLander::Mutate(vector<SGene> &vecActions)

{

  for (int gene=0; gene<vecActions.size(); ++gene)

  {

    //do we mutate the action?

    if (RandFloat() < m_dMutationRate)

    {

      vecActions[gene].action = (action_type)RandInt(0,3);

    }

    //do we mutate the duration?

    if (RandFloat() < m_dMutationRate/2)

    {

      vecActions[gene].duration += RandomClamped()*MAX_MUTATION_DURATION;

      //clamp the duration

      Clamp(vecActions[gene].duration, 0, MAX_ACTION_DURATION);

A Genetic Algorithm Controlled Lander
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    }

  }//next gene

}

The Fitness Function
The fitness function can often be the hardest part of a genetic algorithm to define
because the problem often has multiple objectives. In this example, there are
several objectives that need satisfying before the lunar lander can land successfully.
These are

■ The distance from the landing pad has to be within a certain limit.
■ The lander’s velocity has to be below a certain speed by the time it reaches

the landing pad.
■ The lander’s rotation from the vertical has to be within predefined limits.

When I first implemented a fitness function based on just these three objectives, the
lander was too good at landing. Basically, the algorithm came up with solutions that
just dropped the lander straight out of the sky, rotating it perfectly and applying just
the right amount of thrust to land flawlessly. In short, although technically perfect,
this sort of behavior can look bad in games. Players want to see something more
realistic—more human. So, to add that human touch, I incorporated one more
objective. The fitness scores were boosted for ships that remained in the air longer
than the others. This worked well and the algorithm now converges on realistic-
looking solutions. Often the ship will weave around, hover uncertainly, and twitch
before alighting on the landing platform, just as a human player does.

Let’s take a look at the code for the fitness function.

void CLander::CalculateFitness(int generation)

{

  //calculate distance from pad

  double DistFromPad = fabs(m_vPadPos.x - m_vPos.x);

  double distFit = m_cxClient-DistFromPad;

  //calculate speed of lander

  double speed = sqrt((m_vVelocity.x*m_vVelocity.x)

                     +(m_vVelocity.y*m_vVelocity.y));

  //fitness due to rotation
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  double rotFit = 1/(fabs(m_dRotation)+1);

  //fitness due to time in air

  double fitAirTime = (double)m_cTick/(speed+1);

cTick is a counter which keeps track of how many frames have passed since the
beginning of the lunar lander’s descent. This is divided by the lander’s landing
speed to give a reward combining the air time and the lander’s final speed.

  //calculate fitness

  m_dFitness = distFit + 400*rotFit + 4*fitAirTime;

As you can see, I had to use some multipliers to tweak the fitness function. This is
something you’ll typically have to do when designing a genetic algorithm that has
multiple objectives. In my experience, a good starting point is to make the fitness
score from each objective contribute equally to the total fitness score. In this ex-
ample, the maximum score the lander can receive from getting close to the landing
pad is 400 (the width of the window). The maximum score it can receive from its
rotation is 1, so I’ve used a multiplier of 400, and the score derived from the
lander’s speed and airtime seemed to average around 100, so I have used a multi-
plier of 4. This way each of the objectives may contribute a maximum of 400 (ap-
proximately) to the overall fitness score.

  //check if we have a successful landing

  if( (DistFromPad            < DIST_TOLERANCE)       &&

      (speed                  < SPEED_TOLERANCE)      &&

      (fabs(m_dRotation)      < ROTATION_TOLERANCE))

  {

    m_dFitness = BIG_NUMBER;

  }

}

Finally the fitness function checks to see if the lander has passed all the require-
ments for a safe landing and assigns a large number to the fitness score accordingly,
so that the program knows a solution has been found.

The Update Function
I want to take some time to describe the update function for the GA version of the
lander program because the physics have to be handled differently. The reason for
this is that when implementing a genetic algorithm, it is desirable (unless you are
very patient) to be able to run the code in accelerated time. What I mean by this is
that when evolving candidate solutions, you really want your computer to zip along

A Genetic Algorithm Controlled Lander
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as fast as it can so that a solution is found quickly. Because the update function from
the user controlled version used the time elapsed between each frame as the basis
for its physics calculations, even if you ran it at 5000 frames a second, the lander
would still move as though in real time.

To enable the code to be run in accelerated time—the acceleration due to gravity—
the thrust of the lander and the rotation rate are all pre-calculated using the frame
rate specified in defines.h.

#define GRAVITY_PER_TICK      GRAVITY/FRAMES_PER_SECOND

#define THRUST_PER_TICK       THRUST/FRAMES_PER_SECOND

#define ROTATION_PER_TICK     ROTATION/FRAMES_PER_SECOND

These values can then be used to update the physics. When the program is running
at FRAMES_PER_SECOND frames per second, everything is as it should be, but now you
can let rip and run the machine as fast as possible and the physics will be acceler-
ated, along with everything else. This allows the genetic algorithm to find a solution
as fast as possible.

There is an added bonus to using this method for your updates: the update func-
tion is much faster because there are less calculations to do. The drawback though,
is that if you were to use this technique in the user-controlled version and the
program was run on a slow computer (not able to hit your desired framerate), the
physics would feel different at different framerates. This is usually undesirable
behavior.

This is the first part of the code for the modified UpdateShip function:

bool CLander::UpdateShip()

{

  //just return if ship has crashed or landed

  if (m_bCheckedIfLanded)

  {

    return false;

  }

  //this will be the current action

  action_type action;

  //check that we still have an action to perform. If not then

  //just let the lander drift til it hits the ground

  if (m_cTick >= m_vecActions.size())

  {
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    action = non;

  }

  else

  {

    action = m_vecActions[m_cTick++];

  }

Before each epoch, each individual’s genome is converted into a vector of actions
using the function Decode. This way, it’s easy to use the tick counter as an index into
the array of actions to find which action needs to be performed each frame. See
Figure 6.21.

  //switch the jet graphic off

  m_bJetOn = false;

    switch (action)

    {

      case rotate_left:

         m_dRotation -= ROTATION_PER_TICK;

         if (m_dRotation < -PI)

         {

           m_dRotation += TWO_PI;

         }

         break;

      case rotate_right:

         m_dRotation += ROTATION_PER_TICK;

         if (m_dRotation > TWO_PI)

Figure 6.21

Decoding a genome to
a vector of actions.

A Genetic Algorithm Controlled Lander
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         {

           m_dRotation -= TWO_PI;

         }

         break;

      case thrust:

         //the lander's acceleration per tick calculated from

         //the force the thruster exerts and the lander's mass

         double ShipAcceleration = THRUST_PER_TICK/m_dMass;

         //resolve the acceleration vector into its x, y components

         //and add to the lander's velocity vector

         m_vVelocity.x += ShipAcceleration * sin(m_dRotation);

         m_vVelocity.y += ShipAcceleration * cos(m_dRotation);

         //switch the jet graphic on

         m_bJetOn = true;

         break;

      case non:

         break;

   }//end switch

  //now add in the gravity vector

  m_vVelocity.y += GRAVITY_PER_TICK;

  //update the lander's position

  m_vPos += m_vVelocity;

As you can see, all the physics calculations have been simplified loads. The obser-
vant among you might be wondering where SCALING_FACTOR is from the previous
update function. Well, fortunately for the math, the scaling factor (60) is set the
same as the framerate (60), so they cancel each other out (60/60 = 1).
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I’ve omitted the rest of the code because it’s very similar to the last version. The last
few lines just do some bounds checking—checks to see if the lander is below the
ground plane and updates its fitness score.

Running the Program
When you run the executable for the GA controlled lunar lander, the entire popula-
tion is displayed on the screen at once. Pressing the B key toggles between display-
ing the entire population and displaying the fittest individual from the last genera-
tion. The F key accelerates time and R resets everything for a new run. On average,
the genetic algorithm takes between 100 and 300 generations to find a solution. If
the number of generations reaches a predefined maximum number of generations
(#defined as 500 here), the genetic algorithm resets and starts all over again.

The genetic algorithm in this project is set up very simply. It just uses roulette wheel
selection with elitism and no fitness scaling. So there’s lots of things you can experi-
ment with to try and improve its performance.

Because it’s possible to view all the individuals performing at the same time, you can
see exactly how diverse the population is. You’ll discover that this is great way of
seeing what effect different selection, mutation, and crossover operators are having.

Summary
If I’ve done my job correctly, by now your head should be buzzing with your own ideas
for genetic algorithms and you’ll be impatient to try them out. You will also have
developed a feel for them, which is going to help you greatly in your own projects.

However, if you think genetic algorithms are cool, wait until you get to the next
chapter where I show you how neural networks work!

Stuff to Try
1. Try out the different methods you learned last chapter on the lunar lander

code. See how different techniques alter the rate of convergence. Do any of
them improve the genetic algorithm? (It’s useful to accelerate the GA using
the F key and then keep toggling with the B key to see how the population is
diverging or converging.)

Stuff to Try
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2. Add a fifth objective to the problem. For example, the lunar lander could
start with a fixed amount of fuel, which is burned every time the thrust
control is used. This means the ship now has to find a way of landing before
all the fuel runs out.

3. Use a genetic algorithm to evolve the orbits of several planetary bodies
around a star in a 2D universe. When you crack that problem, see if you can
then evolve the planets’ orbits and their moons’ orbits. Found that easy?
Then what about a binary star system?

(This exercise will help reinforce everything you’ve learned so far in this
book—genetic algorithm techniques, mathematics, and physics).

4. Create a space invader style game, whereby each different alien species’
behavior has been evolved using a genetic algorithm.

Answer to matrix multiplication question:
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Because we do not understand the brain very well, we are constantly tempted to use the
latest technology as a model for trying to understand it. In my childhood we were always
assured that the brain was a telephone switchboard. (What else could it be?) I was
amused to see that Sherrington, the great British neuroscientist, thought that the brain
worked like a telegraph system. Freud often compared the brain to hydraulic and electro-
magnetic systems. Leibniz compared it to a mill, and I am told some of the ancient Greeks
thought the brain functions like a catapult. At present, obviously, the metaphor is the
digital computer.

John R. Searle

Introduction to Neural Networks
For a long time, artificial neural networks were a complete mystery to me. I’d read
about them in literature, of course, and I was able to describe their architecture and
mechanisms, but I just didn’t get that “Ah Ha!” feeling you get when a difficult
concept finally clicks in your mind. It was like hitting my head repeatedly with a
sledgehammer, or like that character in the movie Animal House screaming in pain
“Thank you Sir, I’ll have another!” I couldn’t make the transition from mathemati-
cal concepts to practical uses. Some days I wanted to hunt down the authors of all
the books I’d read about artificial neural networks, tie them to a tree and scream,
“Stop giving me all the jargon and mathematics and just show me something PRAC-
TICAL!” Needless to say, this was never going to happen. I was going to have to
bridge that gap myself… so I did the only reasonable thing one can do in that
position. I gave up. <smile>

Then one beautiful day a few weeks later, I was on holiday gazing out across a misty
Scottish Loch, when suddenly I was struck by an insight. All of a sudden I knew how
artificial neural networks worked. I’d got that “Ah Ha!” feeling! But I had no com-
puter to rush to and write some code to confirm my intuition—just a tent, a sleep-
ing bag, and half a box of Kellog’s Cornflakes. Arghhhhh! That was the moment I
knew I should have bought that laptop. Anyway, some days later I arrived back
home, switched on the machine and let my fingers fly. Within a few hours I had my
first artificial neural network up and running and it worked great! Sure, it needed
tweaking and the code was messy, but it worked and, what’s more, I knew why it
worked! I was a happy man that day I can tell you.
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It’s that “Ah Ha!” feeling I want to pass on to you in this book. Hopefully, you got a
taste for it when we covered genetic algorithms, but if you think that felt good, just
wait until neural networks click into place!

A Biological Neural Network—
The Brain
As artificial neural networks attempt to mimic the way a biological brain works, it’s
appropriate that I spend a few paragraphs talking about the old gray matter in our
skulls. You don’t have to know this stuff, but I recommend reading it because it will
probably aid your visualization of the mechanisms I will be describing when I start
discussing artificial brains. And besides, it’s interesting.

Your brain is not just one big lump of gray blancmange working as a single process-
ing unit like the CPU in a computer. If you were given a cadaver, freshly preserved
in formaldehyde, and with a bone saw, you carefully removed the top of its head,
inside the skull you would see the familiar wrinkled mass of brain tissue. The outer
layer of the brain—the bit that is all wrinkled like a walnut—is a sheet of tissue
named the cortex. If you were to now dip your fingers inside the skull, carefully
remove the brain and slice open the cortex with a surgeon’s knife, you would see
two layers: a gray layer and a white layer (hence the expression “gray matter”—it’s
actually pinkish without the formaldehyde). The gray layer is only a few millimeters
thick and is tightly packed with billions of tiny cells called neurons. The white layer,
which takes up most of the space in the cortex, consists of all the myriad connec-
tions between the neurons. The cortex is wrinkled up like a walnut in order to cram
a large surface area into a small space. This enables the cortex to hold many more
neurons than it could if it were smooth. The human brain contains about 100
billion of these tiny processing units; an ant’s brain contains about 250,000.

Table 7.1 shows the neuron counts of some other common animals.

In the first nine months of a human’s life, these cells are created at the astounding
rate of 25,000 per minute. They’re quite unlike any other cells in the body because
each has a wire-like thread called an axon, sometimes extending many centimeters,
which is used to transmit signals to other neurons. Each neuron consists of a star-
shaped bulb, called the soma, that contains the nucleus of the cell, the axon, and a
multitude of other smaller threads (called dendrites) branching in every direction.
The axon forks into many smaller branches, which terminate in synaptic terminals.
See Figure 7.1.
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Each neuron is connected via its dendrites to approximately 10,000 other neurons.
That makes a possible 1,000,000,000,000,000 connections wired up inside your
head—the equivalent of over 100 million modern telephone exchanges. It’s no
wonder we occasionally get headaches!

Interesting Fact
It has been estimated that if you were to stretch all the axons and dendrites from one
human brain out in a straight line, they would reach from the earth to the moon, and
then back again. If you did the same with all the axons and dendrites from all the
humans on Earth, they would stretch to the nearest galaxy!

Table 7.1 Comparison of Neurons

Animal Number of Neurons

Snail 10,000

Bee 100,000

Hummingbird 10x7

Mouse 10 x 8

Human 10 x 10

Elephant 10 x 11

Figure 7.1

The biological neuron.
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The neurons exchange signals using an electrochemical process. Incoming signals
are received at the junctions where the synaptic terminals and the dendrites meet.
These junctions are known as the synapses. How these signals move about the brain
is a fairly complicated process but the important thing, as far as we’re concerned, is
that, just like a modern computer, which operates by manipulating a series of 1s and
0s, the brain’s neurons either fire or they don’t. The strength of the emitted signal
does not vary—only the frequency. The neuron sums all the incoming signals from
the synapses in some mysterious way, and if the total signal exceeds a threshold
value, the neuron fires and an electrical signal is sent shooting down the axon. If
the total is less than the threshold, the neuron doesn’t fire. Well, that’s a slight over-
simplification, but the explanation will suffice for our purposes.

It’s this massive amount of connectivity that gives the brain its incredible power.
Although each neuron only operates at about 100Hz, because each one functions in
parallel as an independent processing unit, the human brain has some remarkable
properties:

It can learn without supervision. One of the incredible things about our brains is
that they learn—and they can learn with no supervision. If a neuron is stimulated at
high frequency for a long period of time, the strength of that connection is altered
by some process that makes it much easier for that neuron to fire the next time it is
stimulated. This mechanism was postulated 50 years ago by Donald Hebbs in his
book The Organization of Behavior. He wrote:

“When an axon of cell A... excites cell B and repeatedly or persistently takes part in firing
it, some growth process or metabolic change takes place in one or both cells so that A’s
efficiency as one of the cells firing B is increased.”

The opposite of this is if a neuron is left unstimulated for some time, the effective-
ness of its connection slowly decays. This process is known as plasticity.

It is tolerant to damage. The brain can still perform complex tasks even when large
portions of it are damaged. One famous experiment taught rats to navigate a maze.
Scientists then consecutively removed larger and larger parts of their brains. They
found the rats could still find their way around even when a huge portion of their
brain was removed, proving among other things, that the knowledge stored in the
brain is not localized. Other experiments have shown that if small lesions are made
in the brain, neurons have the ability to regrow their connections.

It can process information extremely efficiently. Although the speed of the electro-
chemical signals between neurons is very slow compared with a digital CPU, the
brain can simultaneously process massive amounts of data as neurons work in
parallel. For example, the visual cortex processes images entering through our

A Biological Neural Network—The Brain
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retina in about 100ms. Given the 100Hz operating frequency of your average
neuron, that’s only about ten time steps! This is an incredible feat considering the
amount of data received through our eyes.

It can generalize. One of the things that brains are extremely good at (unlike digital
computers) is recognizing patterns and generalizing based on the information it
already knows. For example, we can read another person’s handwriting even if we
have never seen it before.

It is conscious. Consciousness is a widely and heatedly debated topic among neuro-
scientists and AI researchers. Volumes have been written on the subject, yet there is
no real consensus as to what consciousness actually is. We can’t even agree on
whether only humans are conscious or if we also consider our cousins in the animal
kingdom to be conscious. Is an orangutan conscious? Is your cat conscious? What
about the fish you ate for dinner last week?

So, an artificial neural network (ANN for short) attempts to mimic this amount of
parallelism within the constraints of a modern digital computer, and in doing so,
displays a number of similar properties to a biological brain. Let’s take a look at
how they tick.

The Digital Version
ANNs are built the same way as natural brains in that they use many little building
blocks called artificial neurons. An artificial neuron is just like a simplified version of a
real neuron, but simulated electronically. How many artificial neurons are used in an
ANN can vary tremendously. Some neural nets use less than ten and some may require
many thousands of neurons. It really depends on what they are going to be used for.

Interesting Fact
One man, a guy named Hugo de Garis, ran an extremely ambitious project to create
and train a network of up to one billion neurons. The neurons were very cleverly
created by using cellular automata in a machine custom built for the job: the CAM
Brain Machine. (CAM is an acronym for Cellular Automata Machine.) He boasted that
it would have the intelligence of a cat.

Unfortunately, the company employing him went bust before his dream was realized,
although many neural network researchers feel he was reaching for the stars. He is
now working in Utah as the head of the Utah Brain project. Time will tell if anything
interesting becomes of his ideas.
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I guess by now you’re probably wondering what an artificial neuron looks like. Well,
it doesn’t really look like anything; it’s just an abstraction, but check out Figure 7.2,
it depicts one way of representing an artificial neuron.

The w’s in the gray circles represent floating-point numbers called weights. Each
input into the artificial neuron has a weight associated with it and it’s these weights
that determine the overall activity of the neural network. For the moment, imagine
that all these weights are set to small random values—let’s say between -1 and 1.
Because a weight can be either positive or negative, it can exert an excitory influence
over the input it’s associated with, or it can exert an inhibitory influence. As the
inputs enter the neuron, they are multiplied by their respective weights. A function
in the nucleus—the activation function—then sums all these new, weight-adjusted
input values to give the activation value (again a floating-point number, which can be
negative or positive). If this activation value is above a certain threshold, let’s use
the number one as an example, the neuron outputs a signal and will output a one.
If the activation is less than one, the artificial neuron outputs a zero. This is one of
the simplest types of activation functions found in artificial neurons and it’s called a
step function. If you look at Figure 7.3, I’m sure you’ll be able to guess why.

Figure 7.2

An artificial neuron.

Figure 7.3

The step activation function.

The Digital Version
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Don’t worry too much if none of this is making much sense to you at the moment.
The trick is this: don’t try to make sense of it, just go with the flow for awhile.
Eventually, at some point during this chapter, it will start to click. For now, just relax
and keep on reading.

Now for Some Math
I’m going to try to keep the mathematics down to an absolute minimum, but it’s
going to be useful if you learn some notation. I’ll feed you the math little by little
and introduce new concepts when you get to the relevant sections. This way, I hope
your mind can absorb all the ideas a little more comfortably and you’ll be able to
see how we put the math to work at each stage in the development of a neural net.
First, let’s look at a way of expressing what I’ve told you so far.

An artificial neuron (I’ll just refer to
them as neurons from here on) can have
any number of inputs numbered from
one to n—where n is the total number
of inputs. Each input can be expressed
mathematically as:

The weights can be expressed similarly as:

NOTE
The inputs into a neural network
and the set of weights for each
individual neuron can be thought of
as n-dimensional vectors. You will
often see them referred to in this
way in the more technical literature.

Remember, the activation is the sum of all the weights × inputs. This can now be
written as:

This way of writing down summations can be simplified by using the Greek letter Σ,
that I mentioned in Chapter 5, “Building a Better Genetic Algorithm.”

Just to clarify, here’s what it looks like in code. Assuming an array of inputs and
weights are already initialized as x[n] and w[n], then:

double activation = 0;

for (int i=0; i<n; ++i)

{
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  activation += x[i] * w[i];

}

Figure 7.4 represents the equations as a diagram. Remember, if the activation
exceeds the threshold, the neuron outputs a one; if the activation is below the
threshold, the neuron outputs a zero. This is equivalent to a biological neuron
firing or not firing. Imagine a neuron with five inputs, and all its weights initialized
to random values (-1 < w < 1). Table 7.2 shows how the activation is calculated.

Figure 7.4

A neuron’s activation.

Table 7.2 Calculating the Activation of a Neuron

Input Weight Input × Weight Running Total

1 0.5 0.5 0.5

0 -0.2 0 0.5

1 -0.3 -0.3 0.2

1 0.9 0.9 1.1

0 0.1 0 1.1

If you assume the activation threshold is one, then this neuron would output a one
(because 1.1 > 1).

Make sure you understand exactly how the activation function is calculated before
reading any further.

The Digital Version
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Okay, I Know What a Neuron Is,
but What Do I Do with It?
Just as biological neurons in the brain connect to other neurons, these artificial
neurons are connected together in some way to create the neural network. There
are many, varied ways of connecting neurons but the easiest to understand and the
most widely used is by connecting the neurons together in layers, as in Figure 7.5.
This type of ANN is called a feedforward network. It gets its name from the way each
layer of neurons feed their outputs into the next layer until an output is given.

Figure 7.5

A feedforward network.

As you can see, each input is sent to every neuron in the hidden layer, and then the
output from each neuron in the hidden layer is connected to every neuron in the
next layer. There can be any number of hidden layers within a feedforward net-
work, but one is usually enough to cope with most of the problems you will tackle.
In fact, some problems don’t require any hidden units at all; you can simply con-
nect the inputs straight into the output neurons. Also, the number of neurons I
chose for Figure 7.5 was completely arbitrary. There can be any number of neurons
in each layer; it all depends on the problem. Because the speed of the network
decreases as more neurons are added, and because of other reasons I’ll be explain-
ing in Chapter 9, it’s desirable to keep the network as small as possible.

I can imagine by now you may be feeling a little dazed by all this information. I
reckon the best thing to do at this point is to give you a real world application of a
neural network in the hopes of getting your own brain cells firing! Sound good?
Okay, here goes…

You may have heard or read that neural networks are commonly used for pattern
recognition. This is because they are great at mapping an input state (the pattern
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it’s trying to recognize) to an output state (the pattern it’s been trained to recog-
nize). Here’s how it’s done. Let’s take the example of character recognition. Imag-
ine a panel made up of a grid of lights 8×8. Each light can be switched on or off, so
the panel can be used to display numeric characters. The character “4” is shown in
Figure 7.6.

To solve the problem, a neural net must be designed that will accept the state of the
panel as an input, and then output either a one or a zero—a one to indicate that
the ANN thinks the character “4” is being displayed, and zero if it thinks it is not
being displayed. Therefore, the neural net will have 64 inputs (each one represent-
ing a particular cell in the panel) and a hidden layer consisting of a number of
neurons (more on this later), all feeding their output into just one neuron in the
output layer. I sure hope you can picture this in your head because the thought of
drawing all those little circles and lines for you is not a happy one <smile>.

Once the neural network architecture has been created, it must be trained to recog-
nize the character “4”. One way of doing this is to initialize the neural net with
random weights and then feed it a series of inputs that represent, in this example,
the different panel configurations. For each configuration, we check to see what its
output is and adjust the weights accordingly. If the input pattern we feed it is not a
“4”, then we know the neural network should output a zero. So for every non “4”
character, the weights are adjusted slightly so the output tends toward zero. When
it’s presented with a pattern that represents the character “4”, the weights are
adjusted so the output tends toward the number one.

If you think about it, it would be easy to increase the number of outputs to ten. Then
it would be possible to train the network to recognize all the digits 0 through 9. But
why stop there? Let’s increase the outputs further so the entire alphabet can be

Figure 7.6

The character display grid.

The Digital Version
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recognized. This, in essence, is how handwriting recognition works. For each charac-
ter, the network is trained to recognize many different versions of that letter. Eventu-
ally the network will not only be able to recognize the letters it has been trained with,
but it will also show the remarkable property of being able to generalize. That is to say,
if a letter is drawn slightly differently than the letters in the training set, the network
will still stand a pretty good chance of recognizing it. It’s this ability to generalize that
has made the neural network an invaluable tool that can be applied to a myriad of
applications, from face recognition and medical diagnosis to horse racing prediction
and bot navigation in computer games (and in hardware robots).

This type of training is called supervised learning and the data the network is trained
with is called a training set. There are many different ways of adjusting the weights; the
most common for this type of problem is called backpropagation. I’ll be talking about
backprop later in the book when I show you how you can train a neural network to
recognize mouse gestures. However, the rest of this chapter will be focused on a type
of training that requires little or no supervision at all: unsupervised learning.

So now that I’ve shown you some of the background theory, let’s have some fun and
do something with it. Let me introduce you to the first code project.

The Smart Minesweeper Project
The first example I’m going to talk you through is how to use a neural network to
control the behavior of AI guided minesweepers. The minesweepers will live in a
very simple world. It will just be them and a random scattering of mines.

Figure 7.7

The demo program in action.
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Although the figure is in black and
white, the best performing minesweep-
ers show up in red when you run the
program. The mines, as you have prob-
ably guessed, are the little squares. The
goal of the project is to create a neural
network that will evolve to find the mines
without any help from us at all. To do
this, the weights of the networks will be
encoded into genomes and a genetic
algorithm will be used to evolve them.
Cool, huh?

First of all, let me explain the architecture of the ANN. We need to determine the
number of inputs, the number of outputs, and the number of hidden units/layers.

Choosing the Outputs
So, how is the ANN going to control the movements of the minesweepers? Well,
imagine that the minesweepers run on tracks just like a tank. See Figure 7.8.

TIP
Important: If you have skipped
pages to get here and you don’t
understand how to use genetic
algorithms, please go back and read
up on them before going any further!

The rotation and velocity of the minesweepers are adjusted by altering the relative
speeds of the tracks. Therefore, the neural network will require two outputs—one
for the left track and one for the right.

Figure 7.8

Controlling the minesweeper.

The Smart Minesweeper Project
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Ah but… I hear a few of you mutter. How can we control how fast the tracks move if the
network can only output a one or a zero? And you’d be right; the minesweepers wouldn’t
move at all realistically if the previously described step function determined the
outputs. Fortunately, I have a trick up my sleeve. Instead of using a step threshold as
the activation function, the minesweepers artificial neurons are going to use a
function that provides a continuously graded output between zero and one. There
are a few functions that do this, but the one we are going to use is called the logistic
sigmoid function. Basically, what this function does is soften the output of each
neuron into a curve symmetrical around 0.5, as shown in Figure 7.9.

Figure 7.9

The sigmoid curve.

As the neuron’s activation tends toward
infinity and minus infinity, the sigmoid
function tends toward one and zero.
Negative activation values give results of
less than 0.5; positive activation values give
results greater than 0.5. Written down, the
sigmoid function looks like this:

NOTE
The word sigmoid or sigmoidal is
from the Greek word “sigma” and is
just another way of saying some-
thing is S shaped.

Although this equation may look intimidating to some of you, it’s really very simple.
e is a mathematical constant that approximates to 2.7183, the a is the activation into
the neuron, and p is a number that controls the shape of the curve. p is usually set
to 1. Higher values of p give a flatter response curve; lower values produce a steeper
curve. See Figure 7.10. Very low values produce a curve similar to a step function. p
can be a useful value to play around with when you start tweaking your neural
networks, but in this example we’ll leave it set at 1.
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Choosing the Inputs
Okay, so the outputs are sorted—now for the inputs. To determine what inputs the
network requires, we have to think like a minesweeper. What information does it
need so it can figure out how to head for the mines? The first list of inputs you may
think of could possibly be these:

■ The minesweeper’s position (x, y)
■ The position of the closest mine (x, y)
■ A vector representing the minesweeper’s heading (x, y)

This makes a total of six inputs. But, using these inputs, the network has to work
quite hard before it performs satisfactorily because it has to find a mathematical
relationship between all six inputs. It’s always a good exercise to try and figure out a
way of using the least amount of inputs that still convey the information required
for the network to solve the problem. The fewer inputs your networks use, the fewer
neurons are required. Fewer neurons mean faster training and fewer calculations,
which makes for a speedier network.

A little bit of extra thought can reduce the inputs to four, representing the two
vectors shown in Figure 7.11.

It’s a good idea to standardize all the inputs into a neural network. What I mean by
this is not that all the inputs should be scaled to the interval 0 to 1, but that each
input should carry the same amount of emphasis. Take the inputs we’ve discussed
for the minesweeper, for example. The look-at vector is always a normalized vector
of length 1. This means that its x and y components are always in the interval 0 to 1.
The vector to the closest mine, however, has a much larger magnitude; one of the
components may even be as large as the window width or height. If this data is input

Figure 7.10

Different sigmoid
response curves.
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into the network in its raw state, the
network would be much more sensitive
to the higher valued inputs and give a
poor performance. So, before the
information is input into the neural
network, the data is scaled/standardized
so that the magnitudes are similar. In
this particular example, the vector to the
closest mine is normalized. This makes
for much better performance.

How Many Hidden
Neurons?
Now that the number of input and output neurons has been decided, the next step
is to determine the number of hidden layers and the number of neurons per
hidden layer the network should have. There is no rule for doing this; it all comes
down to developing a “feel” again. Some books and articles do give guidelines for
determining the number of hidden neurons but the consensus among the experts
in this field is that you should take any suggestions like this with a grain of salt.
Basically, it comes down to trial and error. You will normally find that one hidden
layer is plenty for most problems you encounter, so the skill is mostly about choos-
ing the best number of neurons for that single layer. The fewer the better because,
as I’ve already mentioned, fewer neurons make for a faster network. Normally I
would do several runs using varied numbers of hidden neurons to determine the

Figure 7.11

Choosing the inputs.

TIP
Sometimes you will get the best
performance from your neural
networks if you rescale the input data
so that it centers on zero. This little
tip is always worth considering when
designing your networks. I haven’t
done it this way for this minesweeper
project because I wanted to use a
more intuitive approach.
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optimum amount. The neural net I’ve coded for this chapter’s first code project
uses ten hidden neurons (although this isn’t the optimum <smile>). You should
play around with this figure and also the number of hidden layers to see what effect
they have on the minesweeper’s evolution. Anyway, enough of the theory, let’s take
a look at some code. You can find all the source code I’ll be describing in the next
few pages in the Chapter7/Smart Sweepers v1.0 folder on the CD.

CNeuralNet.h
The CNeuralNet.h file contains definitions for an artificial neuron structure, a
structure to define a layer of artificial neurons, and the neural network itself. First,
let’s take a peek at the artificial neuron structure.

SNeuron
This is a very simple structure. The artificial neuron just has to keep a record of how
many inputs there are going into it and a std:vector of doubles representing the
weights. Remember, there is a weight for every input into the neuron.

struct SNeuron

{

  //the number of inputs into the neuron

  int             m_NumInputs;

  //the weights for each input

NOTE
The code for this chapter does not use #defined constants
like the previous code chapters. Because the projects
described here are a lot more complicated and involve a
lot more parameters, I’ve decided to use a class of static
member variables instead of #defines.The variables are
automatically initialized from an “ini” file when an in-
stance of the class is created. Basically, doing it this way
saves you time recompiling whenever a parameter is
changed. All you have to do is change the ini file. This class
is called CParams and the ini file is cunningly called
params.ini. Please look at the code for this class on the CD
if you require any further clarification.

The Smart Minesweeper Project

Team LRN



250 7. Neural Networks in Plain English

  vector<double>  m_vecWeight;

  //ctor

  SNeuron(int NumInputs);

};

This is what the constructor for the SNeuron struct looks like:

SNeuron::SNeuron(int NumInputs): m_NumInputs(NumInputs+1)

{

  //we need an additional weight for the bias hence the +1

  for (int i=0; i<NumInputs+1; ++i)

  {

    //set up the weights with an initial random value

    m_vecWeight.push_back(RandomClamped());

  }

}

As you can see, the constructor takes the number of inputs going into the neuron as
an argument and creates a vector of random weights—one weight for each input.
All the weights are clamped between -1 and 1.

What’s that? I hear you say. There’s an extra weight there! Well, I’m glad you spotted that
because that extra weight is quite important. But to explain why it’s there, I’m going to
have to do some more math. Remember that the activation was the sum of all the
inputs×weights and that the output of the neuron was dependent upon whether this
activation exceeded a threshold value (t). This can be represented as the equation:

where the above is the condition for outputting a one. Because all the weights for
the network have to be evolved, it would be great if the threshold amount could be
evolved too. To make this easy, you use a simple trick to get the threshold to appear
as a weight. Subtract the t from either side of the equation:

Written another way, this equation can be made to look like this:

So I hope you can see how the threshold can now be thought of as a weight that is
always multiplied by an input of -1. This is usually referred to as the bias and this is
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why each neuron is initialized with an additional weight. Now when you evolve the
network, you don’t have to worry about the threshold value because it is built in
with the weights and will take care of itself. Good, eh? Just to make absolutely sure
you know what our new artificial neuron looks like, have a look at Figure 7.12.

SNeuronLayer
The SNeuronLayer structure is very simple; it defines a layer of SNeurons as shown by
the neurons enclosed by the dotted line in Figure 7.13.

Figure 7.12

Artificial neuron with bias.

Figure 7.13

A neuron layer.
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Here is the source for the definition, which shouldn’t require any further explanation:

struct SNeuronLayer

{

  //the number of neurons in this layer

  int              m_NumNeurons;

  //the layer of neurons

  vector<SNeuron>  m_vecNeurons;

  SNeuronLayer(int NumNeurons, int NumInputsPerNeuron);

};

CNeuralNet
This is the class that creates the neural network object. Let me run you through the
definition:

class CNeuralNet

{

private:

  int                    m_NumInputs;

  int                    m_NumOutputs;

  int                    m_NumHiddenLayers;

  int                    m_NeuronsPerHiddenLyr;

  //storage for each layer of neurons including the output layer

  vector<SNeuronLayer>  m_vecLayers;

All the private members should be self-explanatory. The class just needs to define
the number of inputs, outputs, hidden layers, and neurons per hidden layer.

public:

  CNeuralNet();
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The constructor initializes the private member variables from the ini file, then calls
CreateNet to build the network.

  //builds the network from SNeurons

  void  CreateNet();

I’ll show you this function’s code in a moment.

  //gets the weights for the NN

  vector<double>  GetWeights()const;

Because the network weights will be evolved, a method needs to be created that will
return all the weights present in the network as a vector of real numbers. These real
numbers will be encoded into a genome for each neural network. I’ll show you
exactly how the weights are encoded when I start talking about the genetic algo-
rithm used in this project.

  //returns total number of weights in net

  int             GetNumberOfWeights()const;

  //replaces the weights with new ones

  void            PutWeights(vector<double> &weights);

This does the opposite of GetWeights. When an epoch of the genetic algorithm has
been run, the new generation of weights has to be inserted back into the neural
networks. The PutWeight method does this for us.

  //sigmoid response curve

  inline double   Sigmoid(double activation, double response);

Given the sum of all the inputs × weights for a neuron, this method puts them
through the sigmoid activation function.

  //calculates the outputs from a set of inputs

  vector<double>  Update(vector<double> &inputs);

I’ll be commenting on the Update function in just a moment.

}; //end of class definition
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CNeuralNet::CreateNet

I didn’t comment on a couple of the CNeuralNet methods because I wanted to show
you their code in entirety. The first of these is the CreateNet method. This builds the
neural network from SNeurons gathered together in SNeuronLayers like this:

void CNeuralNet::CreateNet()

{

  //create the layers of the network

  if (m_NumHiddenLayers > 0)

  {

    //create first hidden layer

    m_vecLayers.push_back(SNeuronLayer(m_NeuronsPerHiddenLyr, m_NumInputs));

    for (int i=0; i<m_NumHiddenLayers-1; ++i)

    {

      m_vecLayers.push_back(SNeuronLayer(m_NeuronsPerHiddenLyr,

                                         m_NeuronsPerHiddenLyr));

    }

    //create output layer

    m_vecLayers.push_back(SNeuronLayer(m_NumOutputs, m_NeuronsPerHiddenLyr));

  }

  else

  {

    //create output layer

    m_vecLayers.push_back(SNeuronLayer(m_NumOutputs, m_NumInputs));

  }

}

CNeuralNet::Update

The Update function is the main workhorse of the neural network. Here, the inputs
into the network are passed in as an std::vector of doubles. The Update function then
loops through each layer processing each neuron summing up the inputs×weights
and calculating each neuron’s activation by putting the total through the sigmoid
function, as we have discussed in the last few pages. The Update function returns a
std::vector of doubles that correspond to the outputs from the ANN.
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Spend a couple of minutes or so acquainting yourself with the code for the Update
function so you know exactly what’s going on:

vector<double> CNeuralNet::Update(vector<double> &inputs)

{

  //stores the resultant outputs from each layer

  vector<double> outputs;

  int cWeight = 0;

  //first check that we have the correct amount of inputs

  if (inputs.size() != m_NumInputs)

  {

    //just return an empty vector if incorrect.

    return outputs;

  }

  //For each layer...

  for (int i=0; i<m_NumHiddenLayers + 1; ++i)

  {

    if ( i > 0 )

    {

      inputs = outputs;

    }

    outputs.clear();

    cWeight = 0;

    //for each neuron sum the inputs * corresponding weights. Throw

    //the total at the sigmoid function to get the output.

    for (int j=0; j<m_vecLayers[i].m_NumNeurons; ++j)

    {

       double netinput = 0;

       int NumInputs = m_vecLayers[i].m_vecNeurons[j].m_NumInputs;

       //for each weight

       for (int k=0; k<NumInputs - 1; ++k)
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       {

          //sum the weights x inputs

          netinput += m_vecLayers[i].m_vecNeurons[j].m_vecWeight[k] *

                      inputs[cWeight++];

       }

       //add in the bias

       netinput += m_vecLayers[i].m_vecNeurons[j].m_vecWeight[NumInputs-1] *

                   CParams::dBias;

Don’t forget that the last weight in each neuron’s weight vector is the weight for the
bias, which as we have already discussed, is always set to -1. I have included the bias in
the ini file so you can play around with it to see what effect it has on the performance
of the networks you create. Normally though, this value should never be altered.

      //we can store the outputs from each layer as we generate them.

      //The combined activation is first filtered through the sigmoid

      //function

      outputs.push_back(Sigmoid(netinput, CParams::dActivationResponse));

      cWeight = 0;

    }

  }

  return outputs;

}

Encoding the Networks
In the first few chapters, you’ve seen how to encode genetic algorithms in various
ways. But I didn’t show you a straightforward example of real number encoding
because I knew I’d be showing you here. Encoding a neural network of the
feedforward design I’ve been talking about is easy. The neural network is encoded
by reading all the weights from left to right and from the first hidden layer upward
and storing them in a vector. So if we had a network that looked like Figure 7.14,
the encoded vector of weights would be:

0.3, -0.8, -0.2, 0.6, 0.1, -0.1, 0.4, 0.5

I did not include a bias in this network just to keep things simple. When doing this
for real, though, you must always include a bias or you’ll almost certainly not get the
results you desire.
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Okay so far? Great, let’s move on to the genetic algorithm used to manipulate the
encoded genes…

The Genetic Algorithm
Now that all the weights are in a string just like a binary encoded genome, a genetic
algorithm may be applied as discussed earlier in the book. The GA is run after the
minesweepers have been allowed to trundle about for a user-defined amount of
frames. (I like to call them ticks for some reason.) You can find the setting for this,
iNumTicks, in the ini file.

Following is the code for the genome structure. You should find that it looks very
familiar by now.

struct SGenome

{

  vector <double>  vecWeights;

  double           dFitness;

  SGenome():dFitness(0){}

  SGenome( vector <double> w, double f): vecWeights(w), dFitness(f){}

  //overload '<' used for sorting

Figure 7.14

Encoding the weights.
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  friend bool operator<(const SGenome& lhs, const SGenome& rhs)

  {

    return (lhs.dFitness < rhs.dFitness);

  }

};

As you can see, the SGenome structure is almost identical to every other genome
structure shown in the book, except this time the chromosome is a std::vector of
doubles. Therefore, the crossover and selection operators may be applied as nor-
mal. The mutation operator is slightly different in that the value of the weight is
perturbed by a random number, which can be a maximum of dMaxPerturbation.
dMaxPerturbation is declared in the ini file. The mutation rate is also set much higher
for floating point genetic algorithms. For this project, it’s set at 0.1.

Here’s what the mutation function looks like from the minesweeper project’s
genetic algorithm class:

void CGenAlg::Mutate(vector<double> &chromo)

{

  //traverse the weight vector and mutate each weight dependent

  //on the mutation rate

  for (int i=0; i<chromo.size(); ++i)

  {

    //do we perturb this weight?

    if (RandFloat() < m_dMutationRate)

    {

      //add or subtract a small value to the weight

      chromo[i] += (RandomClamped() * CParams::dMaxPerturbation);

    }

  }

}

As in previous projects, I’ve kept the
genetic algorithm for version 1.0 of the
Smart Minesweepers project very simple
so that there’s lots of room for you to
improve it with the techniques you’ve
learned so far. As with most of the other
projects, v1.0 just uses roulette wheel
selection with elitism and single-point
crossover.

NOTE
When the program is running, the
weights may evolve to be any size;
they are not constrained in any way.
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The CMinesweeper Class
This is the class that defines a minesweeper. Just like the lunar lander class de-
scribed in the last chapter, the minesweeper class keeps a record of the
minesweeper’s position, speed, and rotation. It also keeps track of the
minesweeper’s look-at vector; the components of which are used as two of the
inputs into its neural net. This is a normalized vector calculated each frame from
the minesweeper’s rotation and indicates which way the minesweeper is pointing, as
shown in Figure 7.11.

Here is the declaration of the CMinesweeper class:

class CMinesweeper

{

private:

  //the minesweeper's neural net

  CNeuralNet  m_ItsBrain;

  //its position in the world

  SVector2D  m_vPosition;

  //direction sweeper is facing

  SVector2D  m_vLookAt;

  //its rotation(surprise surprise)

  double     m_dRotation;

  double     m_dSpeed;

  //to store output from the ANN

  double     m_lTrack,

             m_rTrack;

m_lTrack and m_rTrack store the current frame’s output from the network. These are
the values that determine the minesweeper’s velocity and rotation.

  //the sweeper's fitness score

  double     m_dFitness;

The Smart Minesweeper Project

Team LRN



260 7. Neural Networks in Plain English

Every time the minesweeper finds a mine, its fitness score increases.

  //the scale of the sweeper when drawn

  double     m_dScale;

  //index position of closest mine

  int        m_iClosestMine;

The CController class has a member that is a std::vector of all the mines.
m_iClosestMine is an index into that vector representing the closest mine to the
minesweeper.

public:

  CMinesweeper();

  //updates the ANN with information from the sweepers environment

  bool       Update(vector<SVector2D> &mines);

  //used to transform the sweepers vertices prior to rendering

  void       WorldTransform(vector<SPoint> &sweeper);

  //returns a vector to the closest mine

  SVector2D  GetClosestMine(vector<SVector2D> &objects);

  //checks to see if the minesweeper has found a mine

  int        CheckForMine(vector<SVector2D> &mines, double size);

  void       Reset();

  //------------------accessor functions

  SVector2D  Position()const{return m_vPosition;}

  void       IncrementFitness(double val){m_dFitness += val;}

  double     Fitness()const{return m_dFitness;}

  void       PutWeights(vector<double> &w){m_ItsBrain.PutWeights(w);}

  int        GetNumberOfWeights()const{return m_ItsBrain.GetNumberOfWeights();}

};
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The CMinesweeper::Update Function
The only CMinesweeper class method I need to show you in more detail is the Update
function. This function is called each frame and updates the neural network of the
minesweeper, among other things. Let’s take a look at the guts of this function:

bool CMinesweeper::Update(vector<SVector2D> &mines)

{

  //this will store all the inputs for the NN

  vector<double> inputs;

  //get vector to closest mine

  SVector2D vClosestMine = GetClosestMine(mines);

  //normalize it

  Vec2DNormalize(vClosestMine);

First of all, the function calculates a vector to the closest mine and then normalizes
it. (Remember, when a vector is normalized its length becomes 1.) The
minesweeper’s look-at vector doesn’t need to be normalized in this way because its
length is always 1. Because both vectors have been effectively scaled to within the
same limits, the inputs can be considered to be standardized, as I discussed earlier.

  //add in the vector to the closest mine

  inputs.push_back(vClosestMine.x);

  inputs.push_back(vClosestMine.y);

  //add in the sweeper's look at vector

  inputs.push_back(m_vLookAt.x);

  inputs.push_back(m_vLookAt.y);

  //update the brain and get the output from the network

  vector<double> output = m_ItsBrain.Update(inputs);

The look-at vector and the vector to the closest mine are then input into the neural
network. The CNeuralNet::Update function updates the minesweeper’s network with
this information and returns a std::vector of doubles as the output.

  //make sure there were no errors in calculating the

  //output

  if (output.size() < CParams::iNumOutputs)

  {
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    return false;

  }

  //assign the outputs to the sweepers left & right tracks

  m_lTrack = output[0];

  m_rTrack = output[1];

After checking to make sure there are no errors when updating the neural network,
the program assigns the outputs to m_lTrack and m_rTrack. These values represent the
forces being exerted on the left track and right track of the minesweeper.

  //calculate steering forces

  double RotForce = m_lTrack - m_rTrack;

  //clamp rotation

  Clamp(RotForce, -CParams::dMaxTurnRate, CParams::dMaxTurnRate);

  m_dSpeed = (m_lTrack + m_rTrack);

The vehicle’s rotational force is calculated by subtracting the force exerted by the
right track from the force exerted by the left track. This is then clamped to make
sure it doesn’t exceed the maximum turn rate specified in the ini file. The vehicle’s
speed is simply the sum of the left track and right track. Now that we know the
minesweeper’s rotational force and speed, its position and rotation can be updated
accordingly.

  //update the minesweepers rotation

  m_dRotation += RotForce;

  //update Look At

  m_vLookAt.x = -sin(m_dRotation);

  m_vLookAt.y = cos(m_dRotation);

  //update position

  m_vPosition += (m_vLookAt * m_dSpeed);

  //wrap around window limits

  if (m_vPosition.x > CParams::WindowWidth) m_vPosition.x = 0;

  if (m_vPosition.x < 0) m_vPosition.x = CParams::WindowWidth;

  if (m_vPosition.y > CParams::WindowHeight) m_vPosition.y = 0;

  if (m_vPosition.y < 0) m_vPosition.y = CParams::WindowHeight;
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To keep things as simple as possible, I’ve made the window wrap around. This way
the code doesn’t have to do any collision response stuff. Although wrap-around
space is a pretty weird concept for us humans, the minesweepers take to it like
ducks to water.

  return true;

}

The CController Class
The CController class is the class that ties everything together. Figure 7.15 shows the
relationship of the different classes to the controller class.

Here’s the definition of the class:

class CController

{

private:

    //storage for the population of genomes

    vector<SGenome>      m_vecThePopulation;

    //and the minesweepers

Figure 7.15

Program flow for the minesweeper project.
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    vector<CMinesweeper> m_vecSweepers;

    //and the mines

    vector<SVector2D>    m_vecMines;

    //pointer to the genetic algorithm object

    CGenAlg*             m_pGA;

    int                  m_NumSweepers;

    int                  m_NumMines;

    //total number of weights used in the neural net

    int                  m_NumWeightsInNN;

    //vertex buffer for the sweeper shape's vertices

    vector<SPoint>       m_SweeperVB;

    //vertex buffer for the mine shape's vertices

    vector<SPoint>       m_MineVB;

    //stores the average fitness per generation for use

    //in graphing.

    vector<double>       m_vecAvFitness;

    //stores the best fitness per generation

    vector<double>       m_vecBestFitness;

    //pens we use for the stats

    HPEN                 m_RedPen;

    HPEN                 m_BluePen;

    HPEN                 m_GreenPen;

    HPEN                 m_OldPen;

    //handle to the application window

    HWND                 m_hwndMain;

    //toggles the speed at which the simulation runs
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    bool                 m_bFastRender;

    //cycles per generation

    int                  m_iTicks;

    //generation counter

    int                  m_iGenerations;

    //window dimensions

    int         cxClient, cyClient;

    //this function plots a graph of the average and best fitnesses

    //over the course of a run

    void   PlotStats(HDC surface);

public:

    CController(HWND hwndMain);

    ~CController();

    void    Render(HDC surface);

    void    WorldTransform(vector<SPoint> &VBuffer,

                           SVector2D      vPos);

    bool    Update();

    //accessor methods

    bool    FastRender(){return m_bFastRender;}

    void    FastRender(bool arg){m_bFastRender = arg;}

    void    FastRenderToggle(){m_bFastRender = !m_bFastRender;}

};

When an instance of the CController class is created, a lot of stuff happens:

■ The CMinesweeper objects are created.
■ The number of weights used in the neural networks is calculated and then this

figure is used in the initialization of an instance of the genetic algorithm class.
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■ The random chromosomes (the weights) from the GA object are retrieved
and inserted (by careful brain surgery) into the minesweeper’s neural nets.

■ The mines are created and scattered about in random locations.
■ All the GDI pens are created for the render function.
■ The vertex buffers for the minesweeper shape and mine shape are created.

Now that everything is initialized, the Update method can be called each frame to
handle the evolution of the minesweepers.

The CController::Update Method
This method is called each frame. The first half of the function iterates through the
minesweepers, calling their update functions and updating the minesweepers’ fitness
scores if a mine has been found. In addition, because m_vecThePopulation contains
copies of all the genomes, the relevant fitness scores are adjusted here too. If the
required number of frames has passed for the completion of a generation, the
method runs an epoch of the genetic algorithm producing a new generation of
weights. These weights are used to replace the old weights in the minesweeper’s
neural nets and each minesweeper’s parameters are reset ready for a new generation.

bool CController::Update()

{

  //run the sweepers through CParams::iNumTicks amount of cycles. During

  //this loop each sweeper's NN is constantly updated with the appropriate

  //information from its surroundings. The output from the NN is obtained

  //and the sweeper is moved. If it encounters a mine its fitness is

  //updated appropriately as is the fitness of its corresponding genome.

  if (m_iTicks++ < CParams::iNumTicks)

  {

    for (int i=0; i<m_NumSweepers; ++i)

    {

      //update the NN and position

      if (!m_vecSweepers[i].Update(m_vecMines))

      {

        //error in processing the neural net, exit

        MessageBox(m_hwndMain, "Wrong amount of NN inputs!", "Error", MB_OK);

        return false;
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      }

      //see if this minesweeper has found a mine

      int GrabHit = m_vecSweepers[i].CheckForMine(m_vecMines,

                                                  CParams::dMineScale);

      if (GrabHit >= 0)

      {

        //we have discovered a mine so increase fitness

        m_vecSweepers[i].IncrementFitness();

        //mine found so replace the mine with another at a random position

        m_vecMines[GrabHit] = SVector2D(RandFloat() * cxClient,

                                        RandFloat() * cyClient);

      }

      //update the genomes fitness score

      m_vecThePopulation[i].dFitness = m_vecSweepers[i].Fitness();

    }

  }

  //Another generation has been completed.

  //Time to run the GA and update the sweepers with their new NNs

  else

  {

    //update the stats to be used in our stat window

    m_vecAvFitness.push_back(m_pGA->AverageFitness());

    m_vecBestFitness.push_back(m_pGA->BestFitness());

    //increment the generation counter

    ++m_iGenerations;

    //reset cycles

    m_iTicks = 0;

    //run the GA to create a new population

    m_vecThePopulation = m_pGA->Epoch(m_vecThePopulation);

    //insert the new (hopefully)improved brains back into the sweepers

The Smart Minesweeper Project
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    //and reset their positions etc

    for (int i=0; i<m_NumSweepers; ++i)

    {

      m_vecSweepers[i].m_ItsBrain.PutWeights(m_vecThePopulation[i].vecWeights);

      m_vecSweepers[i].Reset();

     }

  }

  return true;

}

In summary, here’s what the program is doing each epoch:

1. For each minesweeper and for iNumTicks iterations, call the Update function
and increment the minesweeper’s fitness score accordingly.

2. Retrieve the vector of weights for the minesweeper’s ANN.

3. Use the genetic algorithm to evolve a new population of network weights.

4. Insert the new weights into the minesweeper’s ANN.

5. Go to Step 1 until reasonable performance is achieved.

And finally, Table 7.3 lists the default parameter settings for the Smart Sweepers
v1.0 program.

Running the Program
When you run the program, the “F” key toggles between a display showing the
minesweepers learning how to find the mines and a stats display that shows a simple
graph of the best and average fitness scores generated over the length of the run.

When the graph is displayed, the program runs in accelerated time.

A Couple of Performance Improvements
Although the minesweepers learn to find the mines quite well, there are a couple of
things I’d like to show you which will improve their performance.

Improvement Number One
First, the single-point crossover operator leaves a lot to be desired. As it stands, this
operator is cutting the genome anywhere along its length, and often the genome
will be cut straight through the middle of the weights for a particular neuron.
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To clarify, examine the weights in Figure 7.16. This is the simple network I showed
you earlier to demonstrate the encoding.

Presently, the crossover operator could make a cut anywhere along the length of
this vector, so there is a very high chance the split may be made in the middle of the
weights for a neuron—say between the weights 0.6 and -0.1 of neuron two. This may

Table 7.3 Default Project Settings for Smart Sweepers v1.0

Neural Network

Parameter Setting

Number of inputs 4

Number of outputs 2

Number of hidden layers 1

Number of hidden neurons 10

Activation response 1

Genetic Algorithm

Parameter Setting

Population size 30

Selection type Roulette wheel

Crossover type Single point

Crossover rate 0.7

Mutation rate 0.1

Elitism(on/off) On

Number of elite(N/copies) 4/1

General

Parameter Setting

Number of ticks/epoch 2000

The Smart Minesweeper Project
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not be favorable because, if you think of the neurons as individual units, then any
improvement gained so far may be disturbed. In effect, the crossover operator
could be acting very much like a disruptive mutation operator.

To combat this, I’ve created another type of crossover operator that only cuts at the
boundaries of neurons. (In the example given in Figure 7.16, these would be at
gene positions 3, 6, and 8 shown by the little arrows.) To implement this, I’ve added
another method to the CNeuralNet class: CalculateSplitPoints. This function creates a
vector of all the network weight boundaries and it looks like this:

vector<int> CNeuralNet::CalculateSplitPoints() const

{

  vector<int> SplitPoints;

  int WeightCounter = 0;

  //for each layer

  for (int i=0; i<m_NumHiddenLayers + 1; ++i)

  {

    //for each neuron

    for (int j=0; j<m_vecLayers[i].m_NumNeurons; ++j)

    {

Figure 7.16

A simple network.
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      //for each weight

      for (int k=0; k<m_vecLayers[i].m_vecNeurons[j].m_NumInputs; ++k)

      {

        ++WeightCounter;

      }

      SplitPoints.push_back(WeightCounter - 1);

    }

  }

  return SplitPoints;

}

The constructor of the CController class calls this method when it’s creating the
minesweepers and passes the vector of split points to the genetic algorithm class.
They are stored in a std::vector named m_vecSplitPoints. The genetic algorithm
then uses these split points to implement a two-point crossover operator as follows:

void CGenAlg::CrossoverAtSplits(const vector<double> &mum,

                                const vector<double> &dad,

                                vector<double>       &baby1,

                                vector<double>       &baby2)

{

  //just return parents as offspring dependent on the rate

  //or if parents are the same

  if ( (RandFloat() > m_dCrossoverRate) || (mum == dad))

  {

    baby1 = mum;

    baby2 = dad;

    return;

  }

  //determine two crossover points

  int Index1 = RandInt(0, m_vecSplitPoints.size()-2);

  int Index2 = RandInt(Index1, m_vecSplitPoints.size()-1);

  int cp1 = m_vecSplitPoints[Index1];

  int cp2 = m_vecSplitPoints[Index2];

  //create the offspring

The Smart Minesweeper Project
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  for (int i=0; i<mum.size(); ++i)

  {

    if ( (i<cp1) || (i>=cp2) )

    {

      //keep the same genes if outside of crossover points

      baby1.push_back(mum[i]);

      baby2.push_back(dad[i]);

    }

    else

    {

      //switch over the belly block

      baby1.push_back(dad[i]);

      baby2.push_back(mum[i]);

    }

  }

  return;

}

In my experience, I have found that treating the neurons as individual units when
implementing crossover gives better results than splitting the genomes at random
points along the length of the chromosome.

Improvement Number Two
The other performance improvement I want to discuss with you is another way of
looking at those network inputs. The example you’ve already seen uses four inputs
into the network: a look-at vector and a vector to the closest mine. There is, how-
ever, a way of getting those inputs down to just one.

If you think about it, the minesweepers only need to know one piece of information
to locate the mines and that is an angle that indicates how much to the left or right
the mine is (congratulations, by the way, if you’d already thought about this). Because
we have already calculated a look-at vector and the vector to the closest mine, calculat-
ing the angle (θ) between them is trivial—it’s just the dot product of those vectors, as
I discussed in Chapter 6, “Moon Landings Made Easy.” See Figure 7.17.

Unfortunately, the dot product only gives the magnitude of the angle; it doesn’t
indicate on which side of the minesweeper the angle lays. Therefore, I’ve written
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another vector function that returns the sign of one vector relative to another. The
function prototype looks like this:

inline int Vec2DSign(SVector2D &v1, SVector2D &v2);

You can find the source in the SVector2D.h file if you are interested in the mechan-
ics. But, basically, if v2 is clockwise of v1, the function returns 1. If it’s anticlockwise,
the function returns -1. Combining the dot product and Vec2DSign enable the inputs
to be distilled to their essence, and the network can now accept just one input.
Here’s what the relevant section of the new CMinesweeper::Update function looks like:

//get vector to closest mine

SVector2D vClosestMine = GetClosestMine(mines);

//normalize it

Vec2DNormalize(vClosestMine);

//calculate dot product of the look at vector and Closest mine

//vector. This will give us the angle we need to turn to face

//the closest mine

double dot = Vec2DDot(m_vLookAt, vClosestMine);

//calculate sign

int sign   = Vec2DSign(m_vLookAt, vClosestMine);

inputs.push_back(dot*sign);

You can see how much these two changes speed up the evolution by running the
executable in the Chapter7/Smart Sweepers v1.1 folder.

Figure 7.17

Calculating the angle to the closest mine.

The Smart Minesweeper Project
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An important thing to note is that the network takes longer to evolve with four
inputs because it has to find out more relationships between the input data and
how it should behave. In effect, it is actually learning how to do the dot product and
sign calculation. So, when designing your own networks, you have to carefully
balance pre-calculating a lot of the input data (which may be heavy on the CPU but
leads to faster evolution times) and letting the network figure out the complex
relationships between the input data (which usually takes longer to evolve but can
often be much less CPU intensive).

Last Words
I hope you enjoyed your first foray into the wonderful world of neural networks. I
bet you’re amazed at how simple they can be to use, eh? I know I was.

In the next few chapters, I’ll be expanding on your knowledge, showing you new
training approaches and even ways of evolving the structure of a neural net. First
though, it would be a good idea for you to fool around with the suggestions at the
end of this chapter.

Stuff to Try
1. In v1.0, instead of using the look-at vector as an input, just use the rotation

value, thereby reducing the number of inputs by one. How does this affect
the evolution? Why do you think that is?

2. Try using six inputs describing the raw x/y coordinates of the minesweepers
and the closest mine, and the minesweepers heading vector. Does the net-
work still evolve to find a solution?

3. Change the activation response. Try low values, around 0.1 – 0.3, which will
produce an activation function that acts very much like a step function. Then
try higher values, which will give a more flattened response curve. How does
this affect the evolution?

4. Instead of evolving behavior to pick up the mines, change the fitness function
so the minesweepers avoid the mines.

5. Make sure you fool around with different settings and operators for the
genetic algorithm!

6. Now add another object type—say people. Given this new environment,
evolve vehicles that will avoid the people and yet still pick up the mines. (This
is not as easy as you might think!)

Team LRN
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BLIND MAN: I am healed! The Master has healed me!

BRIAN: I didn’t touch him!

BLIND MAN: I was blind but now I can see. Arghhhhh! [Thud]

—Monty Python’s Life of Brian

B y now you should be feeling fairly comfortable with how a neural network
operates. If not, it’s probably a good idea to go back, read the last chapter

again, and then try your hand at some of the exercises.

In this chapter, I’ll be spending some time discussing how neural networks can be
applied to a couple of common game AI problems: obstacle avoidance and environ-
ment exploration. As a base, I’ll be using the same code as the previous chapter but
this time I’ve created a simple game world that has a number of obstacles scattered
about for the minesweepers to negotiate. The obstacles are stored in a vertex buffer
and rendered just like any other game object. Figure 8.1 shows the minesweepers’
new world.

Figure 8.1

A brave new world.

The goal of this chapter is to show you how to create bots that are able to avoid all
the obstacles and navigate their way around the game world. I’ll start with how to
avoid bumping into things.
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Obstacle Avoidance
Obstacle avoidance is a very common task in game AI. It’s the ability of a game
agent to perceive its environment and to navigate without bumping into the objects
in the game world. There are only a few games out there that do not require this
ability to some degree.

To perform successful obstacle avoidance, the agent must be able to:

■ observe its environment
■ take action to avoid potential collisions

Let’s first look at how a game agent may be given the sense of vision.

Sensing the Environment
So far the minesweepers have had very limited senses. In Chapter 7, “Neural Net-
works in Plain English,” they were blind to all but the closest mine. To enable them
to perceive obstacles, we are going to have to give them a way of “seeing” the world
around them. The way I’ve chosen to do this is by giving each minesweeper a
number of sensors. The sensors are line segments that radiate outward from the
minesweepers’ bodies. See Figure 8.2.

The number of segments and their length can be adjusted, but the default is for five
sensors that radiate outward for 25 pixels. Each frame, a function is called which
tests for an intersection between each sensor and the line segments that make up
the obstacles in the game world. Every minesweeper has a buffer, m_vecdSensors,
which is a std::vector of distances to any obstacle it may encounter. The distances

Figure 8.2

A minesweeper gets sensors.
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are measured between zero and one. The closer the object is to the minesweeper,
the closer to zero the reading returned by the sensor will be. Figure 8.3 shows some
approximate readings a sensor may return.

Figure 8.3

Typical sensor readings.

As you can see, the sensor returns -1 if no obstacle line segments are encountered.
To indicate whether the minesweeper has actually collided with an object (as op-
posed to just detecting it), a test is made to see if the reading returned by each
sensor is below a certain value defined in CParams.h as dCollisionDist. This value is
calculated from the scale of the minesweeper and the length of the sensor seg-
ments. It is a fairly crude way of detecting for collisions, but it’s quick (all the
calculations having already been completed) and it suffices for the purposes of this
demonstration. Let’s take a look at the code that does all the testing:

void CMinesweeper::TestSensors(vector<SPoint> &objects)

{

The function is passed a vector of SPoints that describe all the obstacles/objects the
minesweeper is allowed to perceive. These are defined at the beginning of
CController.cpp.

  m_bCollided = false;

This is the flag that lets the minesweeper know if it collided or not.

  //first we transform the sensors into world coordinates

  m_tranSensors = m_Sensors;

  WorldTransform(m_tranSensors, 1);
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The line segments that describe the sensor segments are created in the method
CMinesweeper::CreateSensors and stored in the vertex buffer m_Sensors. Therefore, just
like any other game object, each frame these sensors need to be transformed into
world coordinates before they are tested against the segments that make up the
obstacles. The transformed vertices are stored in m_transSensors.

  //flush the sensors

  m_vecdSensors.clear();

  //now to check each sensor against the objects in the world

  for (int sr=0; sr<m_tranSensors.size(); ++sr)

  {

    bool bHit = false;

This flag is set if a sensor intersects with an obstacle.

    double dist = 0;

    for (int seg=0; seg<objects.size(); seg+=2)

    {

      if (LineIntersection2D(SPoint(m_vPosition.x, m_vPosition.y),

                             m_tranSensors[sr],

                             objects[seg],

                             objects[seg+1],

                             dist))

      {

        bHit = true;

        break;

      }

    }

This part of the code iterates through each sensor segment and calls the function
LineIntersection2D to perform an intersection test. You can find the code for this
function in the collision.h and collision.cpp files. (If you are interested in the finer
workings of this function, see the comp.graphics.algorithms FAQ in the FAQs folder
on the CD.) If an intersection is detected, the loop exits to avoid any further unnec-
essary calculations.

    if (bHit)

    {

Obstacle Avoidance
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      m_vecdSensors.push_back(dist);

      //implement very simple collision detection

      if (dist < CParams::dCollisionDist)

      {

        m_bCollided = true;

      }

    }

If a sensor/obstacle intersection has been detected, the collision test is undertaken
as described earlier, and m_bCollided is set accordingly.

    else

    {

      m_vecdSensors.push_back(-1);

    }

  }//next sensor

}

This function is called at the beginning of CMinesweeper::Update. The sensor readings
are then used as inputs into the sweepers’ neural nets.

The Fitness Function
This time the fitness function has to reflect how often the minesweepers collide
with an obstacle. The better the fitness score, the better the minesweeper is at
avoiding obstacles. One way of doing it is to penalize a sweeper every time a colli-
sion is detected. This works fine but results in negative fitness scores. You can work
with negative fitness scores just the same as you can with positive ones, but from
experience I’ve learned that it’s easy for hard-to-spot bugs to creep into your code
when working with negative scores. Therefore, if I can find a way I’ll use a fitness
function that always produces positive scores.

With this in mind, the first fitness function you may think of is to simply reward the
minesweeper for every frame that passes without a collision. Something like:

if (!Collided)

{

  Fitness += 1;

}
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Look reasonable? What type of behavior
do you think this type of fitness function
will produce? Give it a few moments of
thought and then take a look at the
SmartSweepers v2.0 code on the CD.

If you predicted the behavior you’ve just
observed, well done. If not, don’t worry.
A lot of people don’t realize the best way
for the minesweepers to maximize their
fitness is to just spin around in circles.
What an easy life!

A way to prevent the minesweepers from
spinning madly around has to be found.
We have to tame those suckers. Fortu-
nately, this is pretty easy to do. All that’s
needed is to give a minesweeper a
reward for every frame where its rotation
is less than a certain value. Like this:

if (fabs(Rotation) < RotationTolerance)

{

   Fitness += 1;

}

If you now run the executable for SmartSweepers v2.1, you’ll see how this has
produced much more reasonable behavior. At last, the minesweepers are starting to
bend to our will!

Because I wanted to display the fitness score onscreen, I’ve broken it down into two
bonuses: m_dSpinBonus and m_dCollisionBonus. These are added together at the end of
every epoch to calculate the final fitness scores. When you run the program, you’ll
see the scores allocated to these two bonuses at the top of the screen. Figure 8.4
shows a screenshot of the minesweepers in action.

Because this method of scoring typically generates fitness scores that are close
together over the population distribution, I’ve used tournament selection as the
selection method for the genetic algorithm. If a fitness proportionate selection
technique is used, then the fitness scores would almost certainly have to be prepro-
cessed in some way to give good results.

NOTE
When running the executables for
this chapter, the minesweepers and
their sensors are drawn using dotted
lines. If elitism is switched on (the
default is ON), the elite minesweep-
ers are drawn using solid black lines.
If any sensors intersect with an
obstacle, they are drawn in red. If a
collision is detected, then the
minesweeper is rendered red.

As before, the F key puts the mine-
sweepers into accelerated time mode
and the R key resets the program.

Obstacle Avoidance
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As you will discover, learning to avoid obstacles is a fairly easy task for a neural
network to learn. In this example, the best minesweepers max out their fitness score
within a handful of generations.

Here are the default settings used for this project:

As you’ll have noticed by now, although the minesweepers learn to avoid obstacles,
they don’t really do very much and usually end up either following the edge of one
of the obstacles or bouncing from one obstacle to the other. After all, they don’t
have any incentive to do anything else. A more useful behavior would be if the
minesweepers could learn to explore their environment in addition to learning how
to avoid the objects in the environment. To do that, we have to give them a memory.

Giving Your Bots a Memory
A memory can be created using a simple data structure to represent the environ-
ment. In this example, the environment is broken down into a number of equally
sized cells that are then stored in a 2D std::vector, as shown in Figure 8.5.

This can now be used as a type of memory map to store relevant information. In
this example, the number of ticks a minesweeper has spent frequenting a cell is
recorded. In this way, the minesweeper can index into a cell and know whether it
has been there before. To explore the environment, the minesweepers must evolve
neural networks that favor unvisited cells.

Figure 8.4

The minesweepers learning to avoid obstacles.
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Table 8.1 Default Project Settings for Smart Sweepers v2.1

Neural Network

Parameter Setting

Number of inputs 5

Number of outputs 2

Number of hidden layers 1

Number of hidden neurons 6

Activation response 1

Genetic Algorithm

Parameter Setting

Population size 40

Selection type Tournament

Num tourney competitors 5

Crossover type Two point

Crossover rate 0.7

Mutation rate 0.1

Elitism (on/off) On

Number of elite (N/copies) 4/1

General

Parameter Setting

Number of sensors 5

Sensor range 25

Number of ticks/epoch 2000

Giving Your Bots a Memory
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The memory map is implemented in the class called CMapper. Here is the definition:

class CMapper

{

private:

  //the 2d vector of memory cells

  vector<vector<SCell> > m_2DvecCells;

The SCell structure is simply a structure that holds a RECT describing the coordinates
of the cell, and an integer, iTicksSpentHere, that keeps track of how much time has
been spent there. The SCell struct also has methods to increment and to clear
iTicksSpentHere.

  int     m_NumCellsX;

  int     m_NumCellsY;

  int     m_iTotalCells;

  //the dimensions of each cell

  double  m_dCellSize;

public:

  CMapper():m_NumCellsX(0),

            m_NumCellsY(0),

Figure 8.5

Memory cells.
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            m_iTotalCells(0)

  {}

  //this must be called after an instance of this class has been

  //created. This sets up all the cell coordinates.

  void    Init(int MaxRangeX, int MaxRangeY);

  //this method is called each frame and updates the time spent

  //at the cell at this position

  void    Update(double xPos, double yPos);

  //returns how many ticks have been spent at this cell position

  int     TicksLingered(double xPos, double yPos) const;

  //returns the total number of cells visited

  int     NumCellsVisited()const;

  //returns if the cell at the given position has been visited or

  //not

  bool    BeenVisited(double xPos, double yPos) const;

  //This method renders any visited cells in shades of red. The

  //darker the red, the more time has been spent at that cell

  void    Render(HDC surface);

  void    Reset();

  int     NumCells(){return m_iTotalCells;}

};

Now that the minesweepers have a memory, they need a way of using it to remem-
ber where they’ve been. This is simple to implement because the endpoints of the
sensors have already been calculated in the last version. The ends of these sensors
may be used to “feel” around inside the memory map and sample the information
found there—similar to the way an insect uses its antennae. See Figure 8.6.

The readings from these feelers are stored in a std::vector called m_vecFeelers and
then input into the neural network along with the range readings from the original

Giving Your Bots a Memory
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sensors. The code to do this can be found in the CMinesweeper::TestSensors method.
Here’s what the additional lines of code look like:

//check how many times the minesweeper has visited the cell

//at the current position

int HowOften = m_MemoryMap.TicksLingered(m_tranSensors[sr].x,

                                         m_tranSensors[sr].y);

if (HowOften == 0)

{

  m_vecFeelers.push_back(-1);

  continue;

}

if (HowOften < 10)

{

  m_vecFeelers.push_back(0);

  continue;

}

if (HowOften < 20)

{

Figure 8.6

The minesweeper grows antennae.
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  m_vecFeelers.push_back(0.2);

  continue;

}

if (HowOften < 30)

{

  m_vecFeelers.push_back(0.4);

  continue;

}

if (HowOften < 50)

{

  m_vecFeelers.push_back(0.6);

  continue;

}

if (HowOften < 80)

{

  m_vecFeelers.push_back(0.8);

  continue;

}

m_vecFeelers.push_back(1);

Because it’s preferable to standardize the inputs into the network, any values added
to m_vecFeelers are scaled to -1 < n < 1. If the minesweeper has never visited a cell
before, the feeler reading for that cell will return a value of -1. If the cell has been
visited, the feeler returns a scaled value between 0 and 1. The more time spent in
the cell, the higher the value will be.

You may wonder why it’s important to have this sliding scale. After all, the feeler could
simply return -1 for an unvisited cell or 1 for a visited cell. The reason can best be
explained with the use of a couple of diagrams. Let’s assume the latter case is true and
that the feelers only give readings of -1 or 1. Now take a look at Figure 8.7.

Giving Your Bots a Memory
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The numbers show how much time has been spent by the minesweeper in each cell.
The unnumbered cells represent unvisited cells. The figure shows a very common
scenario for a minesweeper. Now because the feeler will only read 1 for each visited
cell, the poor old minesweeper is going to get hopelessly stuck here because it
hasn’t a clue how to find its way out. Wherever its feelers feel, they are always going
to return the same value.

However, when a sliding scale is used for the feeler readings, you can see how the
neural network has the potential to learn how to direct the minesweeper toward less
frequented cells and find a way out. See Figure 8.8.

Figure 8.7

Uh Oh!

Figure 8.8

Feeling the way to freedom.
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I’ve also included one other input into
the neural network and that’s the mem-
ber variable m_bCollided. This is explicitly
telling the minesweeper whether it is
presently in collision with an obstacle,
and helps the performance somewhat.
(When you play around with the code,
remove this input and note how the
network takes longer to evolve.)

TIP
Some tasks may benefit from a
small amount of very short-term
memory. This can be achieved
simply and quickly by feeding back
the neural network’s output. For
example, with the minesweepers,
you would create a network with an
additional two inputs, and then use
the previous generation’s outputs
(m_lTrack and m_rTrack) as the
additional two inputs. This type of
network, one that feeds back to
itself in someway, is called a recur-
rent network. See Figure 8.9.

This idea can be extended to feed-
back any number of the previous
generation’s outputs, although, this
will slow down the processing of the
network a great deal and is best
avoided. In a game, you want your
networks to be as speedy as pos-
sible. (Somehow, I think you already
knew that!)

The Fitness Function
A fitness function could be used that combines the fitness function from version 2.1
along with another score for the number of memory cells visited. However, quicker
results can be achieved if only the number of cells visited is considered. To visit as
many cells as possible, the minesweepers will automatically learn how to avoid
obstacles and spinning because doing either of these two activities will only slow
them down and produce lower scores! Smart, huh?

Now’s a good time to run the executable from version 2.2 and see what happens. By
the time the genetic algorithm has performed 100-150 epochs, the minesweepers
will be zipping along very nicely.

Table 8.2 shows the default settings I’ve used for this project.

Figure 8.9

A recurrent network.
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Table 8.2 Default Project Settings for Smart Sweepers v2.2

Neural Network

Parameter Setting

Number of inputs 11

Number of outputs 2

Number of hidden layers 1

Number of hidden neurons 10

Activation response 1

Genetic Algorithm

Parameter Setting

Population size 50

Selection type Tournament

Num tourney competitors 5

Crossover type Two point

Crossover rate 0.7

Mutation rate 0.1

Elitism (on/off) On

Number of elite (N/copies) 4/1

General

Parameter Setting

Number of sensors 5

Sensor range 25

Number of ticks/epoch 2500
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Summary
By now I hope the neurons inside your own head are firing away like a 4th of July
fireworks display. If I’ve done my job correctly, you should be having difficulty
sleeping at night because of all the groovy ideas flying around your skull. And the
more you get comfortable with the technology, the more areas you’ll see where it
may be appropriate to apply what you’ve learned. It needn’t be a big thing, like
using one enormously complicated network to control every aspect of a FPS bot—
that’s being a little optimistic (although someone has already tried it). You can use
them for just handling specific parts of a game agent’s AI.

Neural networks, in my opinion, are better used in a modular way. For example, you
could train up separate networks for particular sorts of behavior, such as pursuit,
flee, explore, and gather, and then use another neural network as a sort of state
machine to choose which of the behaviors is relevant at any given time. Or even use
a simple finite state machine to choose which network is appropriate.

One excellent use would be to use a neural net to calculate the bot aiming for a
Quake-type first-person shooter game. If you’ve played the bots currently available,
you’ll almost certainly have come to the conclusion that the aiming AI leaves a lot
to be desired. When the bots are played at the better skill levels, 30% of the shots
they pull off are ridiculously unlikely—they are just too accurate. It’s like going up
against Clint Eastwood in A Fistful of Dollars! But you could easily design a network
with inputs like visibility (bright/foggy/dark), amount of target visible, distance to
target and the currently selected weapon, and an output that determines a radius of
distance from the center of the target. This network could then be trained to give
much more realistic aiming behavior.

Or how about using a neural network to control the computer-controlled cars in a
racing game? In fact, this has already been done. The cars in Colin McRae Rally 2.0
are driven by neural networks that have been trained to follow racing lines.

Some of the ideas I’ve mentioned would be very difficult to implement using a
genetic algorithm to evolve the network weights. Sometimes a supervised training
method is the best approach to a problem, and that’s what I’m going to be talking
about in the next chapter.

Summary
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Stuff to Try
1. Incorporate some of the project settings into the genomes so they can be

evolved by the genetic algorithm. For example, you could evolve the number
of sensors and their lengths.

2. Add some items for the minesweepers to find.

3. Evolve minesweepers that avoid other minesweepers.

4. Create a neural network to pilot the lunar lander from Chapter 6.

5. Evolve neural networks that play the light cycle game from Tron. This is not as
easy as it first appears. In fact, you are almost certainly doomed to failure, but
trust me, you may fail the task, but the lesson will be valuable. Can you work
out where the difficulty may lie with this problem before you begin?

6. Try adding visualizations to the programs so you can watch the neural net-
works and weights in real time.

Team LRN
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There are 10 kinds of people in this world…

Those who understand binary and those who do not.

I n this chapter, I’m going to show you a completely different way of training a
neural network. Up to now, you’ve been using an unsupervised training technique.

The alternative is to train your networks using a supervised technique. A supervised
training approach can be used when you already have examples of data you can
train the network with. I mentioned this in Chapter 7, “Neural Networks in Plain
English,” when I described how a network may be trained to recognize characters. It
works like this: An input pattern is presented to the network and the output exam-
ined and compared to the target output. If the output differs from the target
output, then all the weights are altered slightly so the next time the same pattern is
presented, the output will be a little closer to the expected outcome. This is re-
peated many times with each pattern the network is required to learn until it per-
forms correctly.

To show you how the weights are adjusted, I’m going to resort to using a simple
mathematical function: the XOR function. But don’t worry, after you’ve learned the
principle behind the learning mechanism, I’ll show you how to apply it to some-
thing much more exciting.

The XOR Function
For those of you unfamiliar with Boolean logic, the XOR (exclusive OR) function is
best described with a table:

The XOR function has played a significant role in the history of neural networks.
Marvin Minsky demonstrated in 1969 that a network consisting of just an input layer
and an output layer could never solve this simple problem. This is because the XOR
function is one of a large set of functions that are linearly inseparable. A function that
is linearly inseparable is one, which when plotted on a 2D graph, cannot be sepa-
rated with a straight line. Figure 9.1 shows graphs for the XOR function and the AND
function. The AND function only outputs a 1 if both inputs are 1 and, as you can see,
is a good example of a function that is linearly separable.
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Interesting Fact
Boolean algebra was invented by George Boole in the mid-nineteenth century. He was
working with numbers that satisfy the equation x2 = x when he came up with his
particular brand of logic. The only numbers that satisfy that equation are 1 and 0, or on
and off, the two states of a modern digital computer. This is why you come across
Boolean operators so often in conjunction with computers.

Although people were aware that adding layers between the input and output layers
could, in theory, solve problems of this type, no one knew how a multilayer network
like this could be trained. At this point, connectionism went out of fashion and the
study of neural networks went into decline. Then in the mid seventies, a man
named Werbos figured out a learning method for multilayer networks called the
backpropagation learning method. Incredibly, this went more or less unnoticed until
the early eighties when there was a great resurgence of interest in the field, and
once again neural networks were the “in thing” to study among computer scientists.

Table 9.1 The XOR Problem

A B A XOR B

1 1 0

0 0 0

1 0 1

0 1 1

Figure 9.1

The XOR and AND function. The
gray line shows the linear
separability of the AND function.
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How Does Backpropagation Work?
Backpropagation, or backprop for short, works like this: First create a network with
one or more hidden layers and randomize all the weights—say to values between -1
and 1. Then present a pattern to the network and note its output. The difference
between this value and the target output value is called the error value. This error
value is then used to determine how the weights from the layer below the output
layer are adjusted so if the same input pattern is presented again, the output will be
a little closer to the correct answer. Once the weights for the current layer have
been adjusted, the same thing is repeated for the previous layer and so on until the
first hidden layer is reached and all the weights for every layer have been adjusted
slightly. If done correctly, the next time the input pattern is presented, the output
will be a little bit closer to the target output. This whole process is then repeated
with all the different input patterns many times until the error value is within
acceptable limits for the problem at hand. The network is then said to be trained.

To clarify, the training set required for an ANN to learn the XOR function would be a
series of vectors like this:

This set of matched input/output patterns is used to train the network as follows:

1. Initialize weights to small random values.

2. For each pattern, repeat Steps a to e.

a. Present to the network and evaluate the output, o.

b. Calculate the error between o and the target output value (t).

c. Adjust the weights in the output layer.

For each hidden layer repeat d and e.

Table 9.2 The XOR Training Set

Input data Output data (target)

(1, 1) (0)

(1, 0) (1)

(0, 1) (1)

(0, 0) (0)
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d. Calculate the error in the hidden layer.

e. Adjust the weights in the hidden layer.

3. Repeat Step 2 until the sum of all the errors in Step b is within an accept-
able limit.

This is how this learning method got its name; the error is propagated backward
through the network. See Figure 9.2.

The derivation of the equations for the backprop learning algorithm is difficult to
understand without some knowledge of calculus, and it’s not my intention to go
into that aspect here. I’m just going to show you what the equations are and how
to use them. If you find that you become interested in the more theoretical side
of this algorithm, then you’ll find plenty of references to good reading material in
the bibliography.

First I’ll show you the equations, then I’ll run through the XOR problem putting in
actual figures, and you’ll get to see backprop in action.

There are basically two sets of equations: one to calculate the error and weight
adjustment for the output layer and the other to calculate the error and weight
adjustments for the hidden layers. To make things less complicated, from now on
I’ll be discussing the case of a network with only one hidden layer. You’ll almost
certainly find that one hidden layer is adequate for most of the problems you’ll
encounter, but if two or more layers are ever required then it’s not too difficult to
alter the code to accommodate this.

Figure 9.2

Backprop in action.

The XOR Function
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Adjusting the Weights for the Output Layer
First, let’s look at the equation to adjust the weights leading into the output layer.
The output from a neuron, k, will be given as ok and target output from a neuron
will be given as tk. To begin with, the error value, Ek , for each neuron is calculated.

To change the weight between a unit j in the hidden layer and an output unit k, use
the following formula:

in which L is a small positive value known as the learning rate. The bigger the learning
rate, the more the weight is adjusted. This figure has to be adjusted by hand to give
the best performance. I’ll talk to you more about the learning rate in a moment.

Adjusting the Weights for the Hidden Layer/s
The equations for calculating the weight adjustments for a neuron, j, in a hidden
layer go like this. As before, the error value is calculated first.

in which n is the number of units in the output layer.

Knowing the error value, the weight adjustment from the hidden unit j, to the input
units i, can be made:

This entire process is repeated until the error value over all the training patterns
has been reduced to an acceptable level.

An Example
Now that you know what the equations are, let’s quickly run through an example
for a network created to solve the XOR problem. The smallest network you can
build that has the capability of solving this problem is shown in Figure 9.3. This
network is a little unusual in that it is fully connected—the inputs are connected
directly to the output as well as to the hidden neuron. Although this is not the type
of network you will be building very often, I’m using it here because its size enables
me to concisely show you the calculations required for backprop.
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Assume the network has been initialized with all the weights set to zero (normally,
they would be set to small random values). For the sake of this demonstration, I’ll
just be running through the calculations using one pattern from the training set, (1,
1), so the expected target output is therefore a 0. The numbers in the neurons show
the activation from that neuron. Don’t forget, the sigmoid activation function gives
a result of 0.5 for a zero input.

As we have discussed, the training will follow these steps:

1. Calculate the error values at the output neurons.

2. Adjust the weights using the result from Step 1 and the learning rate L.

3. Calculate the error values at the hidden neurons.

4. Adjust the weights using the result from Step 3 and the learning rate L.

5. Repeat until the error value is within acceptable limits.

Now to plug in some numbers.

Step one. 0 is the target output tk and 0.5 is the network output ok, so using the
equation:

Figure 9.3

Training an XOR network.

error = (0 – 0.5) × 0.5 × (1 – 0.5) = -0.125

Step two. Adjust the weights going into the output layer using the equation:

Calculating the new weights into the output layer going from left to right and using
a learning rate of 0.1.

New weight(bias) = 0 + 0.1 × -0.125 × -1 = 0.0125

New weight1 = 0 + 0.1 × -0.125 × 1 = -0.0125

The XOR Function
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New weight2 = 0 + 0.1 × -0.125 × 0.5 = -0.00625

New weight3 = 0 + 0.1 × -0.125 × 1 = -0.0125

Step three. Calculate the error value for the neuron in the hidden layer using the
equation:

error = 0.5 × (1 – 0.5) × -0.125 × 0.00625 = -0.000195

Notice how I’ve used the updated weight computed in Step two for w
jk
 to calculate

the error. This is not essential. It’s perfectly reasonable to step through the network
calculating all the errors first and then adjust the weights. Either way works. I do it
this way because it feels more intuitive when I write the code.

Step four. Adjust the weights going into the hidden layer. Again, going from left to
right and using the equation:

New weight(bias) = 0 + 0.1 × 0.000195 × -1 = 0.0000195

New weight1 = 0 + 0.1 × -0.000195 × 1 = -0.0000195

New weight2 = 0 + 0.1 × -0.000195 × 1 = -0.0000195

After this single iteration of the learning method, the network looks like Figure 9.4.

Figure 9.4

The XOR network after one iteration of backprop.

The output this updated network gives is 0.496094. Just a little bit closer to the
target output of 0 than the original output of 0.5.

Step five. Go to step one.
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The idea is to keep iterating through the learning process until the error value
drops below an acceptable value. The number of iterations can be very large and is
proportional to the size of the learning rate: the smaller the learning rate, the more
iterations backprop requires. However, when increasing the learning rate, you run
the risk of the algorithm falling into a local minima.

The example shown only ran one input pattern (1,1) through the algorithm. In
practice, each pattern would be run through the algorithm every iteration. The
entire process goes like this:

1. Create the network.

2. Initialize the weights to small random values with a mean of 0.

3. For each training pattern:

calculate the error value for the neurons in the output layer

adjust the weights of the output layer

calculate the error value for neurons in the hidden layer

adjust the weights of the hidden layer

4. Repeat Step 3 until the error is below an acceptable value.

Changes to the CNeuralNet Code
To implement backpropagation, the CNeuralNet class and related structures have to
be altered slightly to accommodate the new training method. The first change is to
the SNeuron structure so that a record of each neuron’s error value and activation
can be made. These values are accessed frequently by the algorithm.

struct SNeuron

{

  //the number of inputs into the neuron

  int             m_iNumInputs;

  //the weights for each input

  vector<double>  m_vecWeight;

  //the activation of this neuron

  double         m_dActivation;

  //the error value

The XOR Function
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  double         m_dError;

  //ctor

  SNeuron(int NumInputs);

};

The CNeuralNet class has also changed to accommodate the new learning algorithm.
Here is the header for the new version with comments against the changes. I’ve
removed any extraneous methods (used in the last two chapters) for clarity.

//define a type for an input or output vector (used in

//the training method)

typedef vector<double> iovector;

A training set consists of a series of std::vectors of doubles. This typedef just helps to
make the code more readable.

class CNeuralNet

{

private:

  int         m_iNumInputs;

  int         m_iNumOutputs;

  int         m_iNumHiddenLayers;

  int         m_iNeuronsPerHiddenLyr;

  //we must specify a learning rate for backprop

  double      m_dLearningRate;

  //cumulative error for the network (sum (outputs - expected))

  double      m_dErrorSum;

  //true if the network has been trained

  bool        m_bTrained;

  //epoch counter
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  int         m_iNumEpochs;

  //storage for each layer of neurons including the output layer

  vector<SNeuronLayer>  m_vecLayers;

  //given a training set this method performs one iteration of the

  //backpropagation algorithm. The training sets comprise of series

  //of vector inputs and a series of expected vector outputs. Returns

  //false if there is a problem.

  bool            NetworkTrainingEpoch(vector<iovector> &SetIn,

                                       vector<iovector> &SetOut);

  void            CreateNet();

  //sets all the weights to small random values

  void            InitializeNetwork();

  //sigmoid response curve

  inline double   Sigmoid(double activation, double response);

public:

  CNeuralNet::CNeuralNet(int    NumInputs,

                         int    NumOutputs,

                         int    HiddenNeurons,

                         double LearningRate);

  //calculates the outputs from a set of inputs

  vector<double>  Update(vector<double> inputs);

  //trains the network given a training set. Returns false if

  //there is an error with the data sets

  bool            Train(CData* data, HWND hwnd);

  //accessor methods

  bool            Trained()const{return m_bTrained;}

The XOR Function
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  double          Error()const  {return m_dErrorSum;}

  int             Epoch()const  {return m_iNumEpochs;}

};

Before we move on to the first code project, let me list the actual code implementa-
tion of the backprop algorithm. This method takes a training set (which is a series
of std::vectors of doubles representing each input vector and its matching output
vector) and runs the set through one iteration of the backprop algorithm. A record
of the cumulative error for the training set is kept in m_dErrorSum. This error is
calculated as the sum of the squares of each output minus its target output. In the
literature, this method of calculating the error is usually abbreviated to SSE (Sum of
the Squared Errors).

The CNeuralNet::Train method calls NetworkTrainingEpoch repeatedly until the SSE is
below a predefined limit. At this point, the network is considered to be trained.

bool CNeuralNet::NetworkTrainingEpoch(vector<iovector> &SetIn,

                                      vector<iovector> &SetOut)

{

  //create some iterators

  vector<double>::iterator  curWeight;

  vector<SNeuron>::iterator curNrnOut, curNrnHid;

  //this will hold the cumulative error value for the training set

  m_dErrorSum = 0;

  //run each input pattern through the network, calculate the errors and update

  //the weights accordingly

  for (int vec=0; vec<SetIn.size(); ++vec)

  {

    //first run this input vector through the network and retrieve the outputs

    vector<double> outputs = Update(SetIn[vec]);

    //return if error has occurred

    if (outputs.size() == 0)

    {

      return false;

    }

    //for each output neuron calculate the error and adjust weights

    //accordingly
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    for (int op=0; op<m_iNumOutputs; ++op)

    {

      //first calculate the error value

      double err = (SetOut[vec][op] - outputs[op]) * outputs[op]

                   * (1 - outputs[op]);

      //update the error total. (when this value becomes lower than a

      //preset threshold we know the training is successful)

      m_dErrorSum += (SetOut[vec][op] - outputs[op]) *

                     (SetOut[vec][op] - outputs[op]);

      //keep a record of the error value

      m_vecLayers[1].m_vecNeurons[op].m_dError = err;

      curWeight = m_vecLayers[1].m_vecNeurons[op].m_vecWeight.begin();

      curNrnHid = m_vecLayers[0].m_vecNeurons.begin();

      //for each weight up to but not including the bias

      while(curWeight != m_vecLayers[1].m_vecNeurons[op].m_vecWeight.end()-1)

      {

        //calculate the new weight based on the backprop rules

        *curWeight += err * m_dLearningRate * curNrnHid->m_dActivation;

        ++curWeight; ++curNrnHid;

      }

      //and the bias for this neuron

      *curWeight += err * m_dLearningRate * BIAS;

    }

   //**moving backwards to the hidden layer**

    curNrnHid = m_vecLayers[0].m_vecNeurons.begin();

    int n = 0;

    //for each neuron in the hidden layer calculate the error signal

    //and then adjust the weights accordingly

    while(curNrnHid != m_vecLayers[0].m_vecNeurons.end())

    {

The XOR Function
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      double err = 0;

      curNrnOut = m_vecLayers[1].m_vecNeurons.begin();

      //to calculate the error for this neuron we need to iterate through

      //all the neurons in the output layer it is connected to and sum

      //the error * weights

      while(curNrnOut != m_vecLayers[1].m_vecNeurons.end())

      {

        err += curNrnOut->m_dError * curNrnOut->m_vecWeight[n];

        ++curNrnOut;

      }

      //now we can calculate the error

      err *= curNrnHid->m_dActivation * (1 - curNrnHid->m_dActivation);

      //for each weight in this neuron calculate the new weight based

      //on the error signal and the learning rate

      for (int w=0; w<m_iNumInputs; ++w)

      {

        //calculate the new weight based on the backprop rules

        curNrnHid->m_vecWeight[w] += err * m_dLearningRate * SetIn[vec][w];

      }

      //and the bias

      curNrnHid->m_vecWeight[m_iNumInputs] += err * m_dLearningRate * BIAS;

      ++curNrnHid;

      ++n;

    }

  }//next input vector

  return true;

}

Well, now that you’ve seen the theory, let’s start another fun project to illustrate
how to implement it.
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RecognizeIt—Mouse Gesture
Recognition
Imagine you’re playing a real-time strategy
game and instead of having to memorize a
zillion shortcut keys for troop attack and
defense patterns, all you have to do is
make a gesture with your mouse and your
soldiers comply by rearranging themselves
into the appropriate formation. Make a
“V” gesture and your soldiers obediently
shuffle into a “V” formation. A few min-
utes later they become threatened so you
make a box-like gesture and they shuffle
together with their shields and pikes
facing outward. One more sweep of your
hand and they divide into two groups.
This can be achieved by training a neural
network to recognize any gestures the user
makes with the mouse, thereby eliminat-
ing the usual “click fest” that these sort of
games usually require to get anything
done. Also, the user need not be tied
down to using just the built-in gestures; it’s
pretty easy to let the users define their own
custom gestures too. Cool, huh? Let me
tell you how it’s done…

To solve this problem, we have to:

1. Find a way of representing gestures in such a way that they may be input into
a neural network.

2. Train the neural network with some predefined gestures using the method of
representation from 1.

3. Figure out a way of knowing when the user is making a gesture and how to
record it.

4. Figure out a way of converting the raw recorded mouse data into a format the
neural network can recognize.

5. Enable the user to add his own gestures.

NOTE

If you are impatient and want to try
the demo program before you read
any further, you can find an execut-
able in the Chapter9/Executables/
RecognizeIt V1.0 folder on the CD.

First, you must wait until the net-
work is trained. Then, to make a
gesture, press the right mouse
button and while it is still depressed
make the gesture. Then release the
mouse button.

All the pre-defined gestures are
shown in Figure 9.7. If the network
recognizes your gesture, the name of
the gesture will appear in blue in the
upper left-hand corner. If the net-
work is unsure, it will have a guess.

The other versions of the
RecognizeIt program you can see on
the CD utilize improvements and/or
alternative methods described later
in this chapter.

RecognizeIt—Mouse Gesture Recognition
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Representing a Gesture with Vectors
The first task is to work out how the mouse gesture data can be presented to the
ANN. There are a few ways you can do this, but the method I’ve chosen is to repre-
sent the mouse path as a series of 12 vectors. Figure 9.5 shows how the mouse
gesture for Right Arrow can be represented as a series of vectors.

Figure 9.5

Gestures as vectors.

To aid training, these vectors are then normalized before becoming part of the
training set. Therefore, all the inputs into the network have, as in previous exam-
ples, been standardized. This also gives the added advantage, when we come to
process the gestures made by the user, of evenly distributing the vectors through the
gesture pattern, which will aid the ANN in the recognition process.

The neural network will have the same number of outputs as there are patterns to
recognize. If, for example, there are only four predefined gestures the network is
required to learn: Right, Left, Down, and Up as shown in Figure 9.6, the network
would have 24 inputs (to represent the 12 vectors) and four outputs.

The training set for these patterns is shown in Table 9.3.

Figure 9.6

The gestures Right, Left, Down, and Up.
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As you can see, if the user makes the gesture for Right, the neural net should output
a 1 from the first output neuron and zero from the others. If the gesture is Down,
the network should output a 1 from the third output neuron and zero from the
others. In practice though, these types of “clean” outputs are rarely achieved be-
cause the data from the user will be slightly different every time. Even when repeat-
edly making a simple gesture like the gesture for Right, it’s almost impossible for a
human to draw a perfect straight line every time! Therefore, to determine what
pattern the network thinks is being presented to it, all the outputs are scanned and
the one with the highest output is the most likely candidate. If that neuron is the
highest, but only outputting a figure like 0.8, then most likely the gesture is not one
that the network recognizes. If the output is above 0.96 (this is the default #defined
in the code project as MATCH_TOLERANCE), there is a very good chance that the network
recognizes the gesture.

All the training data for the program is encapsulated in a class called CData. This
class creates a training set from the predefined patterns (defined as constants at the
beginning of CData.cpp) and also handles any alterations to the training set when,
for example, a user defined gesture is added. I’m not going to list the source for
CData here but please take a look at the source on the CD if you require further
clarification of how this class creates a training set. You can find all the source code
for this first attempt at gesture recognition in the Chapter9/RecognizeIt v1.0 folder.

Training the Network
Now that you know how to represent a gesture as a series of vectors and have created
a training set, it’s a piece of cake to train the network. The training set is passed to the
CNeuralNet::Train method, which calls the backprop algorithm repeatedly with the

Table 9.3 Training Set to Learn the Gestures:
Right, Left, Down, and Up

Gesture Input data Output data

Right (1,0, 1,0, 1,0, 1,0, 1,0, 1,0, 1,0, 1,0, 1,0, 1,0, 1,0, 1,0) (1,0,0,0)

Left (-1,0, -1,0, -1,0, -1,0, -1,0, -1,0, -1,0, -1,0, -1,0, -1,0, -1,0, -1,0) (0,1,0,0)

Down (0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1, 0,1) (0,0,1,0)

Up (0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1, 0,-1) (0,0,0,1)

RecognizeIt—Mouse Gesture Recognition
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training data until the SSE (Sum of the Squared Errors) is below the value #defined as
ERROR_THRESHOLD (default is 0.003). Here’s what the code looks like:

bool CNeuralNet::Train(CData* data, HWND hwnd)

{

  vector<vector<double> > SetIn  = data->GetInputSet();

  vector<vector<double> > SetOut = data->GetOutputSet();

   //first make sure the training set is valid

   if ((SetIn.size()     != SetOut.size())  ||

       (SetIn[0].size()  != m_iNumInputs)   ||

       (SetOut[0].size() != m_iNumOutputs))

   {

     MessageBox(NULL, "Inputs != Outputs", "Error", NULL);

     return false;

   }

   //initialize all the weights to small random values

   InitializeNetwork();

   //train using backprop until the SSE is below the user defined

   //threshold

   while( m_dErrorSum > ERROR_THRESHOLD )

   {

     //return false if there are any problems

     if (!NetworkTrainingEpoch(SetIn, SetOut))

     {

       return false;

     }

     //call the render routine to display the error sum

     InvalidateRect(hwnd, NULL, TRUE);

     UpdateWindow(hwnd);

   }

   m_bTrained = true;

   return true;

}
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When you load up the source into your own compiler, you should play with the
settings for the learning rate. The default value is 0.5. As you’ll discover, lower
values slow the learning process but are almost always guaranteed to converge.
Larger values speed up the process but may get the network trapped in a local
minimum. Or, even worse, the network may not converge at all. So, like a lot of the
other parameters you’ve encountered so far in this book, it’s worth spending the
time tweaking this value to get the right balance.

Figure 9.7 shows all the predefined gestures the network learns when you run
the program.

Recording and Transforming the Mouse Data
To make a gesture, the user depresses the right mouse button and draws a pattern.
The gesture is finished when the user releases the right mouse button. The gesture
is simply recorded as a series of POINTS in a std::vector. The POINTS structure is
defined in windef.h as:

typedef struct tagPOINTS {

    SHORT x;

    SHORT y;

} POINTS;

Figure 9.7

Predefined gestures.

RecognizeIt—Mouse Gesture Recognition
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Unfortunately, this vector can be any size at all, depending entirely on how long the
user keeps the mouse button depressed. This is a problem because the number of
inputs into a neural network is fixed. We, therefore, need to find a way of reducing
the number of points in the path to a fixed predetermined size. While we are at it, it
would also be useful to “smooth” the mouse path data somewhat to take out any
small kinks the user may have made in making the gesture. This will help the user
to make more consistent gestures.

As discussed earlier, the example program uses an ANN with 24 inputs representing
12 vectors. To make 12 vectors, you need 13 points (see Figure 9.5), so the raw
mouse data has to be transformed in some way to reduce it to those 13 points. The
method I’ve coded does this by iterating through all the points, finding the smallest
span between the points and then inserting a new point in the middle of this short-
est span. The two end points of the span are then deleted. This procedure reduces
the number of points by one. The process is repeated until only the required
number of points remains.

The code to do this can be found in the CController class and looks like this:

bool CController::Smooth()

{

  //make sure it contains enough points for us to work with

  if (m_vecPath.size() < m_iNumSmoothPoints)

  {

    //return

    return false;

  }

  //copy the raw mouse data

  m_vecSmoothPath = m_vecPath;

  //while there are excess points iterate through the points

  //finding the shortest spans, creating a new point in its place

  //and deleting the adjacent points.

  while (m_vecSmoothPath.size() > m_iNumSmoothPoints)

  {

    double ShortestSoFar = 99999999;

    int PointMarker = 0;

    //calculate the shortest span
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    for (int SpanFront=2; SpanFront<m_vecSmoothPath.size()-1; ++SpanFront)

    {

      //calculate the distance between these points

      double length =

      sqrt( (m_vecSmoothPath[SpanFront-1].x - m_vecSmoothPath[SpanFront].x) *

            (m_vecSmoothPath[SpanFront-1].x - m_vecSmoothPath[SpanFront].x) +

            (m_vecSmoothPath[SpanFront-1].y - m_vecSmoothPath[SpanFront].y)*

            (m_vecSmoothPath[SpanFront-1].y - m_vecSmoothPath[SpanFront].y));

      if (length < ShortestSoFar)

      {

        ShortestSoFar = length;

        PointMarker = SpanFront;

      }

    }

    //now the shortest span has been found calculate a new point in the

    //middle of the span and delete the two end points of the span

    POINTS newPoint;

    newPoint.x = (m_vecSmoothPath[PointMarker-1].x +

                  m_vecSmoothPath[PointMarker].x)/2;

    newPoint.y = (m_vecSmoothPath[PointMarker-1].y +

                  m_vecSmoothPath[PointMarker].y)/2;

    m_vecSmoothPath[PointMarker-1] = newPoint;

    m_vecSmoothPath.erase(m_vecSmoothPath.begin() + PointMarker);

  }

  return true;

}

This method of reducing the number of points is not perfect because it doesn’t
account for features in a shape, such as corners. Therefore, you’ll notice that when
you draw a gesture like Clockwise Square, the smoothed mouse path will tend to
have rounded corners. However, this algorithm is fast, and because the ANN is

RecognizeIt—Mouse Gesture Recognition
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trained using smoothed data, enough information is retained for the neural net-
work to recognize the patterns successfully.

Adding New Gestures
The program also lets the user define his own gestures. This is simple to do pro-
vided the gestures are all sufficiently unique, but I wanted to write a paragraph or
two about it because it addresses an important point about adding data to a training
set. If you have a trained neural network and you need to add an additional pattern
for that network to learn, it’s usually a bad idea to try and run the backprop algo-
rithm again for just that additional pattern. When you need to add data, first add it
to the existing training set and start afresh. Wipe any existing network you have and
completely retrain it with the new training set.

A user may add a new gesture by pressing the L key and then making a gesture as
normal. The program will then ask the user if he or she is happy with the entered
gesture. If the user is satisfied, the program smoothes the gesture data, adds it to
the current training set, and retrains the network from scratch.

The CController Class
Before I move on to some of the improvements you can make to the program, let
me show you the header file for the CController class. As usual, the CController class
is the class that ties all the other classes together. All the methods for handling,
transforming, and testing the mouse data can be found here.

class CController

{

private:

  //the neural network

  CNeuralNet*     m_pNet;

  //this class holds all the training data

  CData*          m_pData;

  //the user mouse gesture paths - raw and smoothed

  vector<POINTS> m_vecPath;
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  vector<POINTS> m_vecSmoothPath;

  //the smoothed path transformed into vectors

  vector<double> m_vecVectors;

  //true if user is gesturing

  bool    m_bDrawing;

  //the highest output the net produces. This is the most

  //likely candidate for a matched gesture.

  double  m_dHighestOutput;

  //the best match for a gesture based on m_dHighestOutput

  int     m_iBestMatch;

  //if the network has found a pattern this is the match

  int     m_iMatch;

  //the raw mouse data is smoothed to this number of points

  int     m_iNumSmoothPoints;

  //the number of patterns in the database;

  int     m_iNumValidPatterns;

  //the current state of the program

  mode    m_Mode;

The program can be in one of four states: TRAINING when a training epoch is
underway, ACTIVE when the network is trained and the program is ready to recog-
nize gestures, UNREADY when the network is untrained, and finally LEARNING
when the user is entering a custom-defined gesture.

  //local copy of the application handle

  HWND    m_hwnd;

  //clears the mouse data vectors

  void    Clear();

  //given a series of points this method creates a path of

RecognizeIt—Mouse Gesture Recognition
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  //normalized vectors

  void    CreateVectors();

  //preprocesses the mouse data into a fixed number of points

  bool    Smooth();

  //tests for a match with a pre-learnt gesture by querying the

  //neural network

  bool    TestForMatch();

  //dialog box procedure. A dialog box is spawned when the user

  //enters a new gesture.

  static BOOL CALLBACK DialogProc(HWND   hwnd,

                                  UINT   msg,

                                  WPARAM wParam,

                                  LPARAM lParam);

  //this temporarily holds any newly created pattern names

  static string m_sPatternName;

public:

  CController(HWND hwnd);

  ~CController();

  //call this to train the network using backprop with the current data

  //set

  bool TrainNetwork();

  //renders the mouse gestures and relevant data such as the number

  //of training epochs and training error

  void Render(HDC &surface, int cxClient, int cyClient);

  //returns whether or not the mouse is currently drawing

  bool Drawing()const{return m_bDrawing;}

  //this is called whenever the user depresses or releases the right
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  //mouse button.

  //If val is true then the right mouse button has been depressed so all

  //mouse data is cleared ready for the next gesture. If val is false a

  //gesture has just been completed. The gesture is then either added to

  //the current data set or it is tested to see if it matches an existing

  //pattern.

  //The hInstance is required so a dialog box can be created as a child

  //window of the main app instance. The dialog box is used to grab the

  //name of any user defined gesture

  bool Drawing(bool val, HINSTANCE hInstance);

  //clears the screen and puts the app into learning mode, ready to accept

  //a user defined gesture

  void LearningMode();

  //call this to add a point to the mouse path

  void AddPoint(POINTS p)

  {

    m_vecPath.push_back(p);

  }

};

Some Useful Tips and Techniques
There are many tips and tricks that enable your network to learn quicker or to help
it generalize better, and I’m going to spend the next few pages covering some of the
more popular ones.

Adding Momentum
As you’ve seen, the backprop algorithm attempts to reduce the error of the neural
network a little each epoch. You can imagine the network having an error land-
scape, similar to the fitness landscapes of genetic algorithms. Each iteration,
backprop determines the gradient of the error at the current point in the landscape
and attempts to move the error value toward a global minimum. See Figure 9.8.

Unfortunately, most error landscapes are not nearly so smooth and are more likely
to represent the curve shown in Figure 9.9. Therefore, if you are not careful, your
algorithm can easily get stuck in a local minima.

Some Useful Tips and Techniques
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One way of preventing this is by adding momentum to the weight update. To do this,
you simply add a fraction of the previous time-step’s weight update to the current
weight update. This will help the algorithm zip past any small fluctuations in the
error landscape, thereby giving a much better chance of finding the global mini-
mum. Using momentum also has the added bonus of reducing the number of
epochs it takes to train a network. In this example, momentum reduces the number
of epochs from around 24,000 to around 15,000.

The equation shown earlier for the weight update:

Figure 9.8

Finding the global minimum of the error landscape.

Figure 9.9

Stuck in a local minima!

with momentum added becomes:

in which the [CapDelta]wij is the previous time-step’s weight update, and m repre-
sents the fraction to be added. m is typically set to 0.9.
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Momentum is pretty easy to implement. The SNeuron structure has to be changed to
accommodate another std::vector of doubles, in which the previous time-step’s
weight updates are stored. Then additional code is required for the backprop
training itself. You can find the source code in the folder Chapter9/RecognizeIt
v2.0 (with momentum) on the CD.

Overfitting
As you may have realized by now, a neural network is basically a function
approximator. Given a training set, the ANN attempts to find the function that will
fit the input data to the output data. One of the problems with neural networks is
that they can learn to do this too well and lose the ability to generalize. To show you
what I mean, imagine a network that is learning to approximate the function that
fits the data shown in graph A in Figure 9.10.

The simplest curve that fits the data is shown in graph B, and this is the curve you
ideally want the network to learn. However, if the network is designed incorrectly,
you may end up with it overfitting the data set. If this is the case, you may end up
with it learning a function that describes the curve shown in Figure 9.11.

Figure 9.10

Finding the best fit for a data set.

Figure 9.11

Overfitting a data set.

Some Useful Tips and Techniques
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With a network like this, although it’s done a great job of fitting the data it has been
trained with, it will have great difficulty predicting exactly where any new data
presented to it may fit. So what can you do to prevent overfitting? Here are a few
techniques you can try:

Minimizing the number of neurons. The first thing you should do is reduce the
number of hidden neurons in your network to a minimum. As previously men-
tioned, there is no rule of thumb for judging the amount; as usual, you’ll need to
determine it by good old trial and error. I’ve been using just six hidden units for the
RecognizeIt app and I got there by starting off with 12 and reducing the number
until the performance started to degrade.

Adding jitter. In this context, jitter is not some long-forgotten dance from the ’50s,
but a way of helping the network to generalize by adding noise (random fluctua-
tions around a mean of zero) to the training data. This prevents the network from
fitting any specific data point too closely and therefore, in some situations can help
prevent overfitting. The example found in Chapter 9/RecognizeIt v3.0 (with jitter)
has a few additional lines of code in the CNeuralNet::Update method that adds noise
to the input data. The maximum amount of noise that can be added is #defined as
MAX_NOISE_TO_ADD. However, adding jitter to the mouse gesture application only
makes a very small amount of difference. You will find you will get better results
with jitter when using large training sets.

Early stopping. Early stopping is another simple technique and is a great one to use
when you have a large amount of training data. You split the training data into two
sets: a training set and a validation set. Then, using a small learning rate and a
network with plenty of hidden neurons—there’s no need to worry about having too
many in this case—train the network using the training set, but this time make
periodic tests against the validation set. The idea is to stop the training when the
error from testing against the validation set begins to increase as opposed to reducing
the SSE below a predefined value. This method works well when you have a large
enough data set to enable splitting and can be very fast.

The Softmax Activation Function
Some problems, like the mouse gesture application, are classification problems. That
is to say, given some data, the network’s job is to place it into one of several catego-
ries. In the example of the RecognizeIt program, the neural network has to decide
which category of pattern the user’s mouse gestures fall into. So far we’ve just been
choosing the output with the highest value as the one representing the best match.
This is fine, but sometimes it’s more convenient if the outputs represent a probability
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of the data falling into the corresponding category. To represent a probability, all
the outputs must add up to one. To achieve this, a completely different activation
function must be used for the output neurons: the softmax activation function. It
works like this:

For a network with n output units, the activation of output neuron oi is given by

in which wixi is the sum of all the inputs × weights going into that neuron.

This can be a fairly confusing equation, so let me run through it again to make sure
you understand what’s going on. To get the output from any particular output
neuron, you must first sum all the weights × inputs for every output neuron in the
neural network. Let’s call that total A. Once you’ve done that, to calculate the
output, you iterate through each output neuron in turn and divide the exponential
of that neuron’s A with the sum of the exponentials of all the output neurons’ As.
And just to make doubly sure, here’s what it looks like in code:

double expTot = 0;

//first calculate the exp for the sum of the outputs

for (int o=0; o<outputs.size(); ++o)

{

   expTot += exp(outputs[o]);

}

//now adjust each output accordingly

for (o=0; o<outputs.size(); ++o)

{

  outputs[o] = exp(outputs[o])/expTot;

}

Got it? Great. If you check the CNeuralNet::Update method in version 4.0 of the
RecognizeIt source found in the Chapter9/RecognizeIt v4.0 (softmax) folder on the
CD, you’ll see how I’ve altered it to accommodate the softmax activation function.

Although you can use the sum squared error function (SSE), as used previously, a
better error function to use when utilizing softmax is the cross-entropy error function.
You don’t have to worry where this equation comes from, just be assured that this is

Some Useful Tips and Techniques
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the better error function to apply when your network is designed to produce prob-
abilities. It looks like this:

Where n is the number of output neurons, t is the target value, and y is the
actual output.

Applications of Supervised
Learning
As you have learned, supervised techniques are useful whenever you have a series of
input patterns that need to be mapped to matching output patterns. Therefore, you
can use this technique for anything from Pong to beat’emups and racing games.

As an example, let’s say you are working on a racing game and you want your neural
network to drive the cars as well as that spotty-chinned games tester your company
employs who does nothing but race your cars and discuss Star Trek all day long. You
get the guy to drive the car, and this time while he’s zipping full blast around the
course, you create a training set by recording any relevant data. Each frame (or
every N frames), for the input training set, you would record information like:

■ Distance to left curb
■ Distance to right curb
■ Current speed
■ Curvature of current track segment
■ Curvature of next track segment
■ Vector to best driving line

And for the output training set, you would record the driver’s responses:

■ Amount of steering left or right
■ Amount of throttle
■ Amount of brake
■ Gear change

After a few laps and over a few different courses, you will have amassed enough data
to train a neural network to behave in a similar fashion. Given enough data and the
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correct training, the neural network should be able to generalize what it has
learned and handle tracks it has never seen before. Cool, huh?

A Modern Fable
Before I finish this chapter, I’d like to leave you with a little story. Apparently, the
story is a true one but I haven’t been able to get that confirmed. However, please
keep the story in mind when you are training your own neural networks because
I’m sure you wouldn’t want to make the same mistake as the military <smile>.

Once upon a time, a few Wise Men thought it would be a terrific idea to mount a
camera on the side of a tank and continually scan the environment for possible
threats, like… well, another bigger tank hiding behind a tree. They thought this
would be a great idea because they knew computers were exceptional at doing
repetitive tasks. Computers never grow tired or complacent. They never grow bored
and they never need a break. Unfortunately, computers are terrible at recognizing
things. The Wise Men knew this also, but they also knew about neural networks.
They’d heard good things about this newfangled technology and were prepared to
spend some serious money on it. And they made it so.

The following day, the Wise Men decreed that two sets of images be made. One set
of images were of tanks partially hidden among trees and the other set were of trees
alone, standing tall and proud. The Wise Men examined the images and saw that
they were good. Half of the images from each set were put away for safe keeping in
a darkened room with the door firmly locked and the windows barred—for the
Wise Men were big on security.

On the third day, a state-of-the-art mainframe computer was purchased and its
towering bulk was lowered by crane into a specially constructed room. One of the
Wise Men’s underlings flicked a switch and the gigantic machine whirred into life,
along with five tons of air conditioning equipment and a state-of-the-art shiny steel
coffee machine. A team of incredibly intelligent programmers were hired at great
cost and flown in from all the corners of the world. The programmers observed the
machine with its many flickering lights, whirring magnetic tapes, and glowing
terminals, and saw that it was good.

On the fourth day, the programmers brought forth an artificial neural network
according to their kind. After many hours of testing to make sure it was working
properly and without bugs, they started to feed the network the images of the tanks
and the trees. Each time an image was shown to the network, the machine had to
guess if there was a tank among the trees or not. At first, the machine did poorly

A Modern Fable
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but the clever programmers punished the machine for its mistakes, and in no time
at all it was improving in leaps and bounds. By the end of the fourth day, the net-
work was getting every single answer correct. Life was good.

Although, the coffee, by now had grown thick and rank.

On the morning of the fifth day, the clever programmers double-checked the
results and called the Wise Men forth. The Wise Men watched the machine accu-
rately recognizing the tanks and saw that it was good. Then they commanded that
the doors of the darkened room be flung open and the remaining images be
brought forth. The clever programmers were apprehensive because although they
had known this moment would come, they did not know what to expect. Would the
neural network perform well or not? It was impossible to say because although they
had designed the network, they didn’t really have a clue what was happening inside.
And so, with trembling hands, the clever programmers fed the machine the new
images one by one.

Verily, they were all much relieved and happy to see that every answer was good and
much joy was felt in their hearts.

The sixth day dawned and the Wise Men were concerned, for they knew that things
never go this well in the world of mortals. And so they decreed that a new set of
images be taken and be brought forth with all speed. The new images were pre-
sented to the machine, but to their horror the answers were completely random.
“Oh no!” cried the clever programmers. “Verily we hath truly made a mighty screw up!”

One Wise Man pointed his bony index finger at the all-of-a-sudden-not-so-clever-
programmers, who promptly vanished in a puff of smoke.

On the seventh and eighth day, and for many more days thereafter, the Wise Men
and a newly hired team of clever programmers wondered how it had all gone so
wrong. No one could guess until one day an observant programmer noticed that
the images with tanks in the initial set of photos were all taken on a cloudy day,
whilst the images without the tanks were all taken on a sunny day. The machine had
simply learned to distinguish between a sunny day and an overcast one!

Stuff to Try
1. Try adjusting the learning rate and other parameters to see what effect they

have on the network training. While you are doing this, make sure you try
altering the activation response of the sigmoid function to see how changing
the response curve affects the learning.
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2. Train a neural network to play Pong. First, figure out a way of training it using
a supervised approach. Once you’ve cracked that, write some code to evolve
networks to play Pong as per the last couple of chapters.

3. Train a network to play tic-tac-toe as above.

Stuff to Try
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As soon as we started programming, we found to our surprise that it wasn’t as easy to get
programs right as we had thought. Debugging had to be discovered. I can remember the
exact instant when I realized that a large part of my life from then on was going to be
spent in finding mistakes in my own programs.

—Maurice Wilkes discovers debugging, 1949

S o far, you’ve learned how to evolve behavior that progresses through a series of
epochs. This is fine if it’s acceptable to develop the behavior of your game

agents offline or via epochs that are undertaken during natural breaks in a game
(such as between levels), but now I’m going to show you a simple technique that
you can use to evolve genomes while the game is being played. This can be used
wherever you have a large number of game agents constantly getting destroyed and
created. The advantage of this type of evolution is that it can adapt to accommodate
varying game dynamics, such as different human players or changes to the game
environment it may not have encountered offline. For example, the tank units in
your favorite real-time strategy game could learn to adapt their behavior according
to the playing style of their opponents.

The technique I’m going to describe is a breeze to implement. In short, to evolve a
population online, all you have to do is keep a pool of genomes (the population)
stored in a container that is always kept sorted. Individuals used in the game are
spawned from this pool. Immediately after an individual is killed off in the game,
it’s replaced by mutating one of the better performers in the population (chosen
from amongst the top 20%, say). In this way, the population doesn’t evolve in waves
as each epoch is processed, but rather, continuously, in a constant cycle of birth and
death. For this reason, this technique requires a fast turnaround of game agents in
order to work properly. If your game agents die off at too slow a rate, then it’s
unlikely they will evolve at a satisfactory pace. If, however, your game agents get
killed off swiftly, like in a shoot-em-up or some types of units in real-time strategy
games, this method of evolution may be used to good effect.

Brainy Aliens
To illustrate the principle, I’m going to show you how this technique can be used to
evolve the motion of the aliens in a Space Invaders-type arcade game.
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I’ve kept the example simple. There’s only a bunch of aliens flying around the
screen and their enemy—you. The aliens must learn to stay alive as long as possible.
They die if they get shot or if they fly off the top or bottom of the screen. The
longer they live, the higher their fitness score.

The program uses two containers of aliens. The first container, a std::multiset,
contains a sorted pool of aliens, and the second, a std::vector, contains the invaders
that are currently active within the game. See Figure 10.2.

Figure 10.1

Brainy Aliens in action.

When an alien dies, it is removed from the game and, if its fitness score is better
than the worst performer in the population, its genomes are added to the pool. Its
place in the game is then taken by mutating one of the better performers to date.

Figure 10.2

Real-time evolution.
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Implementation
You can find the source code to this project in the ‘Chapter10/Brainy Aliens’
folder. There are three game object classes: CGun, CBullet, and CAlien, as well as the
usual CNeuralNet and CController classes. The CGun and CBullet classes are straightfor-
ward, and the comments within the code should be sufficient to understand them,
but I’ll describe CAlien and CController in more detail so you understand exactly
how everything works. First, let me show you how the aliens are controlled.

Roswell Revisited: An Alien Brain Autopsy
Before I describe the inner workings of an alien mind, take a quick look at the
definition for the CAlien class.

class CAlien

{

private:

  CNeuralNet      m_ItsBrain;

  //its position in the world

  SVector2D       m_vPos;

  SVector2D       m_vVelocity;

  //its scale

  double          m_dScale;

  //its mass

  double          m_dMass;

  //its age (= its fitness)

  int             m_iAge;

  //its bounding box(for collision detection)

  RECT            m_AlienBBox;

  //vertex buffer for the alien's local coordinates
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  vector<SPoint>  m_vecAlienVB;

  //vertex buffer to hold the alien's transformed vertices

  vector<SPoint>  m_vecAlienVBTrans;

  //when set to true a warning is displayed informing of

  //an input size mismatch to the neural net.

  bool            m_bWarning;

  void         WorldTransform();

  //checks for collision with any active bullets. Returns true if

  //a collision is detected

  bool         CheckForCollision(vector<CBullet> &bullets)const;

  //updates the alien's neural network and returns its next action

  action_type  GetActionFromNetwork(const vector<CBullet> &bullets,

                                    const SVector2D       &GunPos);

  //overload '<' used for sorting

  friend bool operator<(const CAlien& lhs, const CAlien& rhs)

  {

     return (lhs.m_iAge > rhs.m_iAge);

  }

public:

  CAlien();

  void Render(HDC &surface, HPEN &GreenPen, HPEN &RedPen);

  //queries the alien's brain and updates it position accordingly

  bool Update(vector<CBullet> &bullets, const SVector2D &GunPos);

  //resets any relevant member variables ready for a new run

  void Reset();

  //this mutates the connection weights in the alien's neural net

Brainy Aliens
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  void Mutate();

  //------------------------------------accessor methods

  SVector2D   Pos()const{return m_vPos;}

  double      Fitness()const{return m_iAge;}

};

The architecture of each alien brain is shown in Figure 10.3. By default, there can
only be three bullets on the screen at any one time. To detect where these are, an
alien’s neural network has three pairs of inputs, each representing a vector to a
bullet. In addition, each neural network has two inputs representing the vector to
the gun turret. If a bullet is inactive (not on the screen), the matching inputs of the
neural network also receive a vector to the gun turret.

Figure 10.3

Inside an alien brain.

The aliens have mass and are affected by gravity. To move, they can fire thrusters,
which blast them up, left, and right. There are four actions an alien can chose from
each frame. These are

■ Thrust up
■ Thrust left
■ Thrust right
■ Drift

An alien’s neural network has three outputs, each one acting like a switch for one of
the first three actions shown in the list. To be considered switched on, an output
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must have an activation greater than 0.9. If more than one output is above 0.9, the
highest valued is chosen. If all the switches are off, the alien just drifts with gravity.

The actions are enumerated as the type, action_type.

enum action_type{thrust_left,

                 thrust_right,

                 thrust_up,

                 drift};

For example, the action for the network with the outputs shown on the left in
Figure 10.4 would be thrust_right, and the action for the network on the right
would be drift.

Here’s what the method to update and receive instructions from the alien brain
looks like.

action_type CAlien::GetActionFromNetwork(const vector<CBullet> &bullets,

                                         const SVector2D       &GunPos)

{

  //the inputs into the net

  vector<double> NetInputs;

  //This will hold the outputs from the neural net

  static vector<double> outputs(0,3);

  //add in the vector to the gun turret

  int XComponentToTurret = GunPos.x - m_vPos.x;

  int YComponentToTurret = GunPos.y - m_vPos.y;

  NetInputs.push_back(XComponentToTurret);

Figure 10.4

Example actions.

Brainy Aliens
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  NetInputs.push_back(YComponentToTurret);

  //now any bullets

  for (int blt=0; blt<bullets.size(); ++blt)

  {

    if (bullets[blt].Active())

    {

      double xComponent = bullets[blt].Pos().x - m_vPos.x;

      double yComponent = bullets[blt].Pos().y - m_vPos.y;

      NetInputs.push_back(xComponent);

      NetInputs.push_back(yComponent);

    }

    else

    {

      //if a bullet is innactive just input a vector pointing to

      //the gun turret

      NetInputs.push_back(XComponentToTurret);

      NetInputs.push_back(YComponentToTurret);

    }

  }

  //feed the inputs into the net and get the outputs

  outputs = m_ItsBrain.Update(NetInputs);

  //this is set if there is a problem with the update

  if (outputs.size() == 0)

  {

     m_bWarning = true;

  }

  //determine which action is valid this frame. The highest valued

  //output over 0.9. If none are over 0.9 then just drift with

  //gravity

Team LRN



335

  double BiggestSoFar = 0;

  action_type action = drift;

  for (int i=0; i<outputs.size(); ++i)

  {

    if( (outputs[i] > BiggestSoFar) && (outputs[i] > 0.9))

    {

      action = (action_type)i;

      BiggestSoFar = outputs[i];

    }

  }

  return action;

}

Because the program is only responsive at the edges of the sigmoid function’s slope,
the activation response for the sigmoid function is set lower in params.ini than
usual, at 0.2. This makes the response curve much steeper and has the effect of
making the networks much more sensitive to a change in the connection weights,
which aids speedy evolution.

Now that you know how the neural networks are set up, let me show you how the
evolutionary mechanism works.

Alien Evolution
As usual, CController is the class that ties everything together, but this time there is
no familiar epoch function. All the spawning and mutation is now handled by the
Update method. Before I show you that though, let me talk you through the defini-
tion of the CController class.

class CController

{

private:

  //the player's gun

  CGun*            m_pGunTurret;

Brainy Aliens
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The player can move the gun left and right using the cursor keys. To fire bullets, the
player uses the space bar. If you examine the CGun class, you will also find a method
called AutoGun. This moves the gun erratically left and right and fires at random.
Because at the commencement of a run the aliens tend to be pretty stupid, AutoGun
is used in conjunction with accelerated time to rapidly spawn aliens until the popu-
lation reaches the required size (default 200).

  //the pool of aliens

  multiset<CAlien> m_setAliens;

This is the pool of genomes from which all the aliens are spawned. A multiset is a
STL container that keeps all its elements ordered. See the following sidebar for
further details about how multisets are used.

  //the currently active aliens

  vector<CAlien>   m_vecActiveAliens;

These are the aliens that are active in the game. When one dies, it is replaced by
mutating one of the fitter members of m_setAliens.

  int              m_iAliensCreatedSoFar;

This variable keeps track of all the newly created aliens at the start of a run. Each
new alien is first tested for fitness in the game environment and then added to the
multiset. When this figure has reached the required population size, aliens can be
spawned from the multiset.

  int              m_iNumSpawnedFromTheMultiset;

  //vertex buffer for the stars

  vector<SPoint>   m_vecStarVB;

  //keeps track of the window size

  int              m_cxClient,

                   m_cyClient;

  //lets the program run as fast as possible

  bool             m_bFastRender;

  //custom pens used for drawing the game objects

  HPEN             m_GreenPen;

  HPEN             m_RedPen;

  HPEN             m_GunPen;
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  HPEN             m_BarPen;

  void    WorldTransform(vector<SPoint> &pad);

  CAlien  TournamentSelection();

public:

  CController(int cxClient, int cyClient);

  ~CController();

  //The workhorse of the program. Updates all the game objects and

  //spawns new aliens into the population.

  bool  Update();

  void  Render(HDC &surface);

  //resets all the controller variables and creates a new starting

  //population of aliens, ready for another run

  void  Reset();

  //------------------------accessor functions

  bool FastRender(){return m_bFastRender;}

};

STL NOTE
A multiset is a STL container class for automatically keeping elements sorted based
upon the sorting criteria for that element type (the default sorting criteria is the <
operator). It is very similar to its little brother std::set, except that a multiset may
contain duplicates, whereas a set may not. To use a multiset, you must #include the
appropriate header file: <set>

#include <set>

multiset<int> MySet

To add an element to a multiset (or set) use insert:

MySet.insert(3);

Brainy Aliens
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Because sets and multisets are implemented as binary trees, they do not allow direct
element access because that could foul up the order of the tree. Instead, you may only
access elements using iterators.

Here’s an example that inserts ten random integers into a multiset and then outputs
the elements to the screen in order.

#include <iostream>

#include <set>

using namespace std;

int main()

{

  const int SomeNumbers[10] = {12, 3, 56, 10, 3, 34, 8, 234, 1, 17};

  multiset<int> MySet;

  //first, add the numbers

  for (int i= 0; i<10; ++i)

  {

    MySet.insert(SomeNumbers[i]);

  }

  //create an iterator

  multiset<int>::iterator CurrentElement = MySet.begin();

  //and use it to access the elements

  while (CurrentElement != MySet.end())

  {

    cout  << *CurrentElement << ", ";

    ++CurrentElement;

  }

  return 1;

}

When run, the output of this program is

1, 3, 3, 8, 10, 12, 17, 34, 56, 234
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The CController::Update Method

This is the workhorse of the program. After updating the gun turret and the stars,
this method iterates through all the aliens kept in m_vecActiveAliens and calls their
update function. The CAlien::Update function queries each alien’s brain to see what
action should be undertaken this time-step and then updates the alien’s position
accordingly. If the alien has been shot or if it has moved beyond the window bound-
aries, it’s removed from the game and added to the population pool (its fitness is
equal to the amount of time it remained alive, measured in ticks). Because a
std::multiset is used as the container for the pool, any newly added aliens are
automatically inserted into their correctly sorted position (by fitness). If the re-
quired population size has been met, the code then deletes the last member—the
weakest alien—of the multiset to keep the size of the pool constant.

Now the code must replace the dead
alien with a new one. To do this, it uses
tournament selection to choose an alien
from the best 20% (default value) of the
population pool. It then mutates this
individual’s weights depending on the
mutation rate and adds it to
m_vecActiveAliens. The size of
m_vecActiveAliens is, therefore, always
kept constant. The default number of
aliens shown on screen at any one time
can be set using the parameter CParams::
iNumOnScreen.

Take a look at the following code listing
which will help clarify your understand-
ing of this process.

bool CController::Update()

{

  //switch the autogun off if enough offspring have been

  //spawned

  if (m_iNumSpawnedFromTheMultiset > CParams::iPreSpawns)

  {

    m_pGunTurret->AutoGunOff();

    m_bFastRender = false;

NOTE
I have omitted the crossover opera-
tor in this program because I
wanted to demonstrate that suc-
cessful evolution still occurs without
it and when using this technique,
you want your spawning code to run
as fast as possible.

In the next chapter, I’ll be explaining
another reason why omitting the
crossover operator may be a good
idea when evolving neural nets.

Brainy Aliens
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  }

  //get update from player for the turret movement

  //and update any bullets that may have been fired

  m_pGunTurret->Update();

  //move the stars

  for (int str=0; str<m_vecStarVB.size(); ++str)

  {

    m_vecStarVB[str].y -= 0.2;

    if (m_vecStarVB[str].y < 0)

    {

      //create a new star

      m_vecStarVB[str].x = RandInt(0, CParams::WindowWidth);

      m_vecStarVB[str].y = CParams::WindowHeight;

    }

  }

  //update the aliens

  for (int i=0; i<m_vecActiveAliens.size(); ++i)

  {

    //if alien has 'died' replace with a new one

    if (!m_vecActiveAliens[i].Update(m_pGunTurret->m_vecBullets,

                               m_pGunTurret->m_vPos))

    {

      //first we need to re-insert into the breeding population so

      //that its fitness score and genes are recorded.

      m_setAliens.insert(m_vecActiveAliens[i]);

      //if the required population size has been reached, delete the

      //worst performer from the multiset

      if (m_setAliens.size() >= CParams::iPopSize)

      {

        m_setAliens.erase(--m_setAliens.end());

      }
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      ++m_iNumSpawnedFromTheMultiset;

      //if early in the run then we are still trying out new aliens

      if (m_iAliensCreatedSoFar <= CParams::iPopSize)

      {

        m_vecActiveAliens[i] = CAlien();

        ++m_iAliensCreatedSoFar;

      }

      //otherwise select from the multiset and apply mutation

      else

      {

        m_vecActiveAliens[i] = TournamentSelection();

        m_vecActiveAliens[i].Reset();

        if (RandFloat() < 0.8)

        {

          m_vecActiveAliens[i].Mutate();

        }

      }

    }

  }//next alien

  return true;

}

And that’s all there is to it! As you will find when you play around with the program,
the aliens evolve all sorts of ways of staying alive as long as possible and learn to
adapt to your attempts at killing them.

Running the Program
When you run the Brainy Aliens program, it will initially boot up in accelerated
time mode. This allows the population of aliens to evolve a little before you get a go
at killing them. The default number of pre-spawns is 200 and a blue bar at the
bottom of the display indicates the program’s progress. At this point, although you
can’t see it, the autogun is operating, blasting mindlessly away at random. When the

Brainy Aliens
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blue bar reaches the right hand side of the screen, the program will hand over the
control of the gun to you and you’ll be able to shoot away to your hearts content.

Table 10.1 shows the default project settings.

Table 10.1 Default Project Settings for Brainy Aliens

Parameters for the Neural Networks

Parameter Setting

Num hidden layers 1

Num neurons per hidden layer 15

Activation response 0.2

Parameters Affecting Evolution

Parameter Setting

Mutation rate 0.2

Max mutation perturbation 1

Alien pool size 200

Percent considered fit to spawn 20%

Number of tournament competitors 10

Number of pre-spawns 200

Other Parameters

Parameter Setting

Bullet speed 4

Max number of displayed aliens 10

Max available bullets 3
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Stuff to Try
1. As usual, make sure you experiment with varying amounts of hidden units

and layers to observe what effect they have on the performance of the aliens.

2. Evolve separate neuro controllers for each alien for dropping bombs on the
gun turret.

3. Experiment with different types of fitness functions.

4. Create a game that has “waves” of aliens. This way you can combine normal
GA techniques to breed the population between waves, and you get the best
of both worlds!

Stuff to Try
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It would appear that we have reached the limits of what it is possible to achieve with
computer technology, although one should be careful with such statements, as they tend to
sound pretty silly in 5 years time.

—John Von Neumann 1949

A s you have learned, the architecture—
or topology—of a neural network

plays an important role in how effective
it is. You’ve also learned that choosing
the parameters for that architecture is
more of an art than a science and
usually involves an awful lot of hands-on
tweaking. Although you can develop a
“feel” for this, wouldn’t it be great if
your networks evolved to find the best
topology along with the network
weights? A network that is simple
enough to learn whatever it is you want
it to learn, yet not so simple that it loses
its ability to generalize?

When using an evolutionary algorithm
to evolve neural network topology, we
can imagine an undulating fitness
landscape where each point in search
space represents a certain type of archi-
tecture. The goal of an EANN (Evolu-
tionary Artificial Neural Network),
therefore, is to traverse that landscape as
best it can before alighting upon the
global optima.

A fair amount of time and thought has been put into this problem by a number of
different researchers, and I’m going to spend the first part of this chapter describing
some of the many techniques available. The second part of the chapter will be spent
describing a simple implementation of what I consider to be one of the better methods.

NOTE
This problem has been tackled in a
few non-evolutionary ways. Re-
searchers have attempted to create
networks either constructively or
destructively.A destructive algorithm
commences with an oversized ANN
with many neurons, layers, and links
and attempts to reduce its size by
systematically pruning the network
during the training process. A
constructive process is one that
approaches the problem from the
opposite end, by starting with a
minimal network and adding neu-
rons and links during training.
However, these methods have been
found to be prone to converging
upon local optima and, what’s more,
they are still usually fairly restrictive
in terms of network architecture.
That is to say, only a fraction of the
full spectrum of possible topologies
is usually available for these tech-
niques to explore.
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As with every other problem tackled with evolutionary algorithms, any potential
solution has to figure out a way of encoding the networks, a way of assigning fitness
scores, and valid operators for performing genome mutation and/or crossover. I say
or crossover because a few methods dispose with this potentially troublesome opera-
tor altogether, preferring to rely entirely on mutation operators to navigate the
search space. So before I describe some of the popular EANNs, let me show you why
this operator can be so problematic.

The Competing Conventions
Problem
One of the main difficulties with encoding candidate networks is called the compet-
ing conventions problem—sometimes referred to as the structural-functional map-
ping problem. Simply put, this is where a system of encoding may provide several
different ways of encoding networks that exhibit identical functionality. For ex-
ample, imagine a simple encoding scheme where a network is encoded as the order
in which the hidden neurons appear in a layer. Figure 11.1 shows a couple of
examples of simple networks.

Using the simple scheme I’ve just proposed, Network 1 may be encoded as:

A B C D

and Network 2 as:

D C B A

Figure 11.1

A simple encoding
scheme.
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If you look carefully, you’ll notice that, although the order of the neurons is differ-
ent—and therefore the genomes are different—both networks are essentially
identical. They will both exhibit exactly the same behavior. And this is where the
problem lies, because if you now attempt to apply a crossover operator to these two
networks, lets say at the midpoint of the genome, the resultant offspring will be:

A B B A or D C C D

This is an undesirable result because not
only have both offspring inherited
duplicated neurons, they have also lost
50% of the functionality of their parents
and are unlikely to show a performance
improvement. (Even if one of them did
go on to produce such ’70s classics as
Super Trooper and Dancing Queen. <smile>).

Obviously, the larger the networks are,
the more frequently this problem is
encountered. And this results in a more
negative effect on the population of
genomes. Consequently, it is a problem
researchers do their best to avoid when
designing an encoding scheme.

Direct Encoding
There are two methodologies of EANN encoding: direct encoding and indirect
encoding. The former attempts to specify the exact structure of the network by
encoding the number of neurons, number of connections, and so on, directly into
the genome. The latter makes use of growth rules, which may even define the
network structure recursively. I’ll be discussing those in a moment, but first let’s
take a look at some examples of direct encoding.

GENITOR
GENITOR is one of the simplest techniques to be found and is also one of the
earliest. A typical version of this algorithm encodes the genome as a bit string. Each
gene is encoded with nine bits. The first bit indicates whether there is a connection

NOTE
There is an alternative camp of
opinion to the competing conven-
tion problem. Some researchers
believe that any steps taken to avoid
this problem may actually create
more problems. They feel it’s prefer-
able to simply ignore the problem
and allow the evolutionary process
to handle the disposal of the “handi-
capped” networks, or to ditch the
crossover operator altogether and
rely entirely on mutation to traverse
the search space.
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between neurons and the rest represent the weight (-127 to 127). Given the network
shown in Figure 11.2, the genome is encoded as:

110010000  000000010 101000011 000000101 110000011

Where the bit in bold is the connectivity bit.

The disadvantage of this technique, as with many of the encoding techniques
developed to date, is that a maximal network topology must be designed for each
problem addressed in order for all the potential connectivity to be represented
within the genome. Additionally, this type of encoding will suffer from the compet-
ing conventions problem.

Binary Matrix Encoding
One popular method of direct encoding is to use a binary adjacency matrix. As an
example, take a look at the network shown in Figure 11.3.

Figure 11.2

GENITOR encoding. The light gray connectivity lines
indicate disabled connections.

Figure 11.3

Binary matrix
representation for a
simple 5-node network

Direct Encoding
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As you can see, the connectivity for this network can be represented as a matrix of
binary digits, where a 1 represents a connection between neurons and a 0 signifies
no connection. The chromosome can then be encoded by just assigning each row
(or column) of the matrix to a gene. Like so:

00110 00010 00001 00001 00000

However, because the network shown is entirely feedforward, this encoding is wasteful
because half the matrix will always contain zeros. Realizing this, we can dispose of
one-half of the matrix, as shown in Figure 11.4, and encode the chromosome as:

0110 010 01 1

which, I’m sure you will agree, is much more efficient!

Figure 11.4

The adjusted matrix.

Once encoded, the bit strings may be run through a genetic algorithm to evolve
the topologies. Each generation, the chromosomes are decoded and the resultant
networks initialized with random weights. The networks are then trained and a
fitness is assigned. If, for example, backprop is used as the training mechanism,
the fitness function could be proportional to the error generated, with an addi-
tional penalty as the number of connections increases in order to keep the network
size at a minimum.

Obviously, if your training approach can handle any form of connectivity, not just
feedforward, then the entire matrix may be represented. Figure 11.5 shows an
example of this. A genetic algorithm training approach would be okay with this type
of network, but standard backpropagation would not.
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Some Related Problems
It has been demonstrated that when using matrix encoding (and some other forms
of direct encoding), performance deteriorates as the size of the chromosome
increases. Because the size increases in proportion to the square of the number of
neurons, performance deteriorates pretty quickly. This is known as the scalability
problem. Also, the user still has to decide how many neurons will make up the
maximal architecture before the matrix can be created. In addition, this type of
representation does not address the competing conventions problem discussed
earlier. It’s very likely, when using this encoding, that two or more chromosomes
may display the same functionality. If these chromosomes are then mated, the
resultant offspring has little chance of being fitter than either parent. For this
reason, it’s quite common for the crossover operator to be dismissed altogether
with this technique.

Node-Based Encoding
Node-based encoding tackles the problem by encoding all the required information
about each neuron in a single gene. For each neuron (or node), its gene will
contain information about the other neurons it is connected to and/or the weights
associated with those connections. Some node-based encoding schemes even go so
far as to specify an associated activation function and learning rate. (A learning
rate, don’t forget, is used when the network is trained using a gradient descent
method like backpropagation.)

Because the code project for this chapter uses node-based encoding, I’ll be discuss-
ing this technique in a lot more detail later on, but for now, just so you get the idea,
let’s look at a simple example that encodes just the connectivity of a network.

Figure 11.5

Network with recurrent
connectivity.

Direct Encoding
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Figure 11.6 shows two simple networks and their chromosomes. Each gene contains
a node identifier and a list of incoming connections. In code, a simplified gene and
genome structure would look something like this:

struct SGene

{

  int            NodeID;

  vector<Node*>  vecpNodes;

}

struct SGenome

{

  vector<SGene> chromosome;

  double        fitness;

};

Mutation operators using this sort of encoding can be varied and are simple to
implement. They include such mutations as adding a link, removing a link, adding
a node, or removing a node. The crossover operator, however, is a different beast
altogether. Care must be taken to ensure valid offspring are produced and that
neurons are not left stranded without any incoming and outgoing connections.
Figure 11.7 shows the resultant offspring if the two chromosomes from Figure 11.6
are mated after the third gene (the “C” gene).

Figure 11.6

Node-based encoding.
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Once valid genetic algorithm operators have been defined, the neural networks
encoded using the described scheme may be evolved as follows (assuming they are
trained using a training set in conjunction with a gradient descent algorithm like
backpropagation):

1. Create an initial random population of chromosomes.

2. Train the networks and assign a fitness score based on the overall error value
of each network (target output – best trained output). It is also feasible to
penalize the score as the networks grow in size. This will favor populations
with fewer neurons and links.

3. Choose two parents using your favorite selection technique (fitness propor-
tionate, tournament, and so on).

4. Use the crossover operator where appropriate.

5. Use the mutation operator/s where appropriate.

6. Repeat Steps 3,4, and 5 until a new population is created.

7. Go to Step 2 and keep repeating until a satisfactory network is evolved.

Figure 11.7

Crossover in action.

Direct Encoding
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Later in the chapter, I’ll be showing you how to use node-based encoding to evolve
the topology and the connection weights at the same time.

Path-Based Encoding
Path-based encoding defines the structure of a neural network by encoding the
routes from each input neuron to each output neuron. For example, given the
network described by Figure 11.8, the paths are:

1 → A → C→ 3

1 → D → B → 4

1 → D → C → 3

2 → D → C → 3

2 → D → B → 4

Because each path always begins with an input neuron and always ends with an
output neuron, this type of encoding guarantees there are no useless neurons
referred to in the chromosome. The operator used for recombination is two-point
crossover. (This ensures the chromosomes are always bound with an input and
output neuron). Several mutation operators are typically used:

■ Create a new path and insert into the chromosome.
■ Choose a section of path and delete.
■ Select a path segment and insert a neuron.
■ Select a path segment and remove a neuron.

Because the networks defined by this type of encoding are not restricted to
feedforward networks (links can be recurrent), a training approach such as genetic
algorithms must be used to determine the ideal connection weights.

Figure 11.8

Path-based encoding.
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Indirect Encoding
Indirect encoding methods more closely mimic the way genotypes are mapped to
phenotypes in biological systems and typically result in more compact genomes.
Each gene in a biological organism does not give rise to a single physical feature;
rather, the interactions between different permutations of genes are expressed.
Indirect encoding techniques try to emulate this mechanism by applying a series of
growth rules to a chromosome. These rules often specify many connections simulta-
neously and may even be applied recursively. Let’s take a look at a couple of these
techniques, so you get a feel for how they can work.

Grammar-Based Encoding
This type of encoding uses a series of developmental rules that can be expressed as
a type of grammar. The grammar consists of a series of left-hand side symbols (LHS)
and right-hand side symbols (RHS). Whenever a LHS symbol is seen by the develop-
ment process, it’s replaced by a number of RHS symbols. The development process
starts off with a start symbol (a LHS symbol) and uses one of the production rules to
create a new set of symbols. Production rules are then applied to these symbols until
a set of terminal symbols has been reached. At this point, the development process
stops and the terminal symbols are expressed as a phenotype.

If you’re anything like me, that last paragraph probably sounded like gobbledygook!
This is a difficult idea to understand at first, and it’s best illustrated with diagrams.
Take a look at Figure 11.9, which shows an example of a set of production rules.

The S is the start symbol and the 1s and 0s are terminal symbols. Now examine
Figure 11.10 to see how these rules are used to replace the start symbol S with more
symbols in the grammar, and then how these symbols in turn are replaced by more
symbols until the terminal symbols have been reached. As you can clearly see, what
we have ended up with is a binary matrix from which a phenotype can be con-
structed. Cool, huh?

Figure 11.9

Example production
rules for grammar-
based encoding.

Indirect Encoding
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A genetic algorithm is used to evolve the growth rules. Each rule can be expressed
in the chromosome by four positions corresponding to the four symbols in the RHS
of the rule. The actual position (its loci) of the rule along the length of the chromo-
some determines its LHS. The number of non-terminal symbols can be in any
range. The inventors of this technique used the symbols A through Z and a through
p. The rules that had terminal symbols as their RHS were predefined, so the chro-
mosome only had to encode the rules consisting of non-terminal symbols. There-
fore, the chromosome for the example shown in Figure 11.10 would be:

ABCD cpac aaae aaaa aaab

where the first four positions correspond to the start symbol S, the second four to
the LHS symbol A, and so on.

Bi-Dimensional Growth Encoding
This is a rather unusual type of encoding. The neurons are represented by having a
fixed position in two-dimensional space, and the algorithm uses rules to actually
grow axons, like tendrils reaching through the space. A connection is made when an
axon touches another neuron. This is definitely a method best illustrated with a
diagram, so take a look at Figure 11.11 to see what’s going on.

Figure 11.10

Following the growth rules.
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The left-hand side of Figure 11.11 shows the neurons with all their axons growing
outward, and the right-hand side shows where connections have been established.

The designers of this technique use a genome encoding which consists of 40 blocks,
each representing a neuron. There are five blocks at the beginning of the genome
to represent input neurons, five at the end to represent output neurons, and the
remaining thirty are used as hidden neurons.

Each block has eight genes.

■ Gene1 determines if the neuron is present or not.
■ Gene2 is the X position of the neuron in 2D space.
■ Gene3 is the Y position.
■ Gene4 is the branching angle of the axon growth rule. Each time the axon

divides, it divides using this angle.
■ Gene5 is the segment length of each axon.
■ Gene6 is the connection weight.
■ Gene7 is the bias.
■ Gene8 is a neuron type gene. This gene in the original experiment was used

to determine which input the input neuron represented.

As you can imagine, this technique is tricky to implement and also pretty slow to
evolve. So, although it’s interesting, it’s not really of much practical use.

And that ends your whistle-stop tour of encoding techniques. Next, I’ll show you a
fantastic way of using node-based encoding to grow your networks from scratch.

Figure 11.11

Axons growing outward
from neurons located in
2D space.

Indirect Encoding
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NEAT
NEAT is short for Neuro Evolution of Augmenting Topologies and has been developed by
Kenneth Stanley Owen and Risto Miikkulainen at the University of Texas. It uses
node-based encoding to describe the network structure and connection weights,
and has a nifty way of avoiding the competing convention problem by utilizing the
historical data generated when new nodes and links are created. NEAT also at-
tempts to keep the size of the networks it produces to a minimum by starting the
evolution using a population of networks of minimal topology and adding neurons
and connections throughout the run. Because nature works in this way—by increas-
ing the complexity of organisms over time—this is an attractive solution and is
partly the reason I’ve chosen to highlight this technique in this chapter.

There’s quite a bit of source code required to implement this concept, so the
related code is listed as I describe each part of the NEAT paradigm. This way (if I do
it in the proper order <smile>), the source will help to reinforce the textual expla-
nations and help you to grasp the concepts quickly. You can find all the source code
for this chapter in the Chapter11/NEAT Sweepers folder on the CD.

First, let me describe how the networks are encoded.

The NEAT Genome
The NEAT genome structure contains a list of neuron genes and a list of link genes. A
link gene, as you may have guessed, contains information about the two neurons it
is connected to, the weight attached to that connection, a flag to indicate whether
the link is enabled, a flag to indicate if the link is recurrent, and an innovation
number (more on this in a moment). A neuron gene describes that neuron’s
function within the network—whether it be an input neuron, an output neuron, a
hidden neuron, or a bias neuron. Each neuron gene also possesses a unique identi-
fication number.

Figure 11.12 shows the gene lists for a genome describing a simple network.

SLinkGene
The link gene structure is called SLinkGene and can be found in genes.h. Its defini-
tion is listed here:

struct SLinkGene

{

  //the IDs of the two neurons this link connects
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  int     FromNeuron,

          ToNeuron;

  double  dWeight;

  //flag to indicate if this link is currently enabled or not

  bool    bEnabled;

  //flag to indicate if this link is recurrent or not

  bool    bRecurrent;

  //I'll be telling you all about this value shortly

  int     InnovationID;

  SLinkGene(){}

  SLinkGene(int    in,

            int    out,

Figure 11.12

Encoding a network the
NEAT way.

NEAT
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360 11. Evolving Neural Network Topology

            bool   enable,

            int    tag,

            double w,

            bool   rec = false):bEnabled(enable),

                                InnovationID(tag),

                                FromNeuron(in),

                                ToNeuron(out),

                                dWeight(w),

                                bRecurrent(rec)

  {}

  //overload '<' used for sorting(we use the innovation ID as the criteria)

  friend bool operator<(const SLinkGene& lhs, const SLinkGene& rhs)

  {

    return (lhs.InnovationID < rhs.InnovationID);

  }

};

SNeuronGene
The neuron gene structure is called SNeuronGene and is found in genes.h. Here is its
definition:

struct SNeuronGene

{

  //its identification number

  int       iID;

  //its type

  neuron_type NeuronType;

This is an enumerated type. The values are input, hidden, bias, output, and none. You
will see how the none type is used when I discuss innovations in the next section.

  //is it recurrent?

  bool      bRecurrent;

A recurrent neuron is defined in NEAT as a neuron with a connection that loops back
on itself. See Figure 11.13
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  //sets the curvature of the sigmoid function

  double    dActivationResponse;

In this implementation, the sigmoid function’s activation response is also evolved
separately for each neuron.

  //position in network grid

  double    dSplitY, dSplitX;

If you imagine a neural network laid out on a 2D grid, it’s useful to know the coor-
dinates of each neuron on that grid. Among other things, this information can be
used to render the network to the display as a visual aid for the user.

When a genome is first constructed, all the neurons are assigned a SplitX and a
SplitY value. I’ll just stick to discussing the SplitY value for now, but the SplitX value
is calculated in a similar way. Each input neuron is assigned a SplitY value of 0 and
each output neuron a value of 1. When a neuron is added, it effectively splits a link,
and so the new neuron is assigned a SplitY value halfway between its two neighbors.
Figure 11.14 should help clarify this.

Figure 11.13

A neuron with two incoming links: an outgoing
link and a looped recurrent link.

Figure 11.14

Some example SplitY
depths.

NEAT
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362 11. Evolving Neural Network Topology

As well as being used to calculate the display coordinates for the network render
routine, this information is also invaluable for calculating the overall network depth
and for determining if a newly created link is recurrent.

  SNeuronGene(neuron_type type,

              int         id,

              double      y,

              double      x,

              bool        r = false):iID(id),

                                     NeuronType(type),

                                     bRecurrent(r),

                                     pNeuronMarker(NULL),

                                     dSplitY(y),

                                     dSplitX(x)

  {}

};

CGenome
Here’s the definition of the genome class. There will be some methods and mem-
bers you will not understand the purpose of just yet, but just take a quick glance at
the class for now and move onto the next section.

(Please note, I have omitted the accessor methods for the sake of brevity).

class CGenome

{

private:

  //its identification number

  int                     m_GenomeID;

  //all the neurons which make up this genome

  vector<SNeuronGene>     m_vecNeurons;

  //and all the links

  vector<SLinkGene>       m_vecLinks;

  //pointer to its phenotype
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  CNeuralNet*             m_pPhenotype;

  //its raw fitness score

  double                  m_dFitness;

  //its fitness score after it has been placed into a

  //species and adjusted accordingly

  double                  m_dAdjustedFitness;

  //the number of offspring this individual is required to spawn

  //for the next generation

  double                  m_dAmountToSpawn;

  //keep a record of the number of inputs and outputs

  int                     m_iNumInputs,

                          m_iNumOutPuts;

  //keeps a track of which species this genome is in (only used

  //for display purposes)

  int                     m_iSpecies;

  //returns true if the specified link is already part of the genome

  bool    DuplicateLink(int NeuronIn, int NeuronOut);

  //given a neuron id this function just finds its position in

  //m_vecNeurons

  int     GetElementPos(int neuron_id);

  //tests if the passed ID is the same as any existing neuron IDs. Used

  //in AddNeuron

  bool    AlreadyHaveThisNeuronID(const int ID);

public:

  CGenome();

  //this constructor creates a minimal genome where there are output &

  //input neurons and every input neuron is connected to each output neuron

NEAT
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364 11. Evolving Neural Network Topology

  CGenome(int id, int inputs, int outputs);

  //this constructor creates a genome from a vector of SLinkGenes

  //a vector of SNeuronGenes and an ID number

  CGenome(int                     id,

          vector<SNeuronGene>     neurons,

          vector<SLinkGene>       genes,

          int                     inputs,

          int                     outputs);

  ~CGenome();

  //copy constructor

  CGenome(const CGenome& g);

  //assignment operator

  CGenome& operator =(const CGenome& g);

  //create a neural network from the genome

  CNeuralNet*         CreatePhenotype(int depth);

  //delete the neural network

  void                DeletePhenotype();

  //add a link to the genome dependent upon the mutation rate

  void                AddLink(double      MutationRate,

                              double      ChanceOfRecurrent,

                              CInnovation &innovation,

                              int         NumTrysToFindLoop,

                              int         NumTrysToAddLink);

  //and a neuron

  void                AddNeuron(double      MutationRate,

                                CInnovation &innovation,

                                int         NumTrysToFindOldLink);

  //this function mutates the connection weights

  void                MutateWeights(double  mut_rate,
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                                    double  prob_new_mut,

                                    double  dMaxPertubation);

  //perturbs the activation responses of the neurons

  void                MutateActivationResponse(double mut_rate,

                                               double MaxPertubation);

  //calculates the compatibility score between this genome and

  //another genome

  double              GetCompatibilityScore(const CGenome &genome);

  void                SortGenes();

  //overload '<' used for sorting. From fittest to poorest.

  friend bool operator<(const CGenome& lhs, const CGenome& rhs)

  {

    return (lhs.m_dFitness > rhs.m_dFitness);

  }

};

Operators and Innovations
Now that you’ve seen how a network structure is encoded, let’s have a look at the
ways a genome may be mutated. There are four mutation operators in use in this
implementation of NEAT: a mutation to add a link gene to the genome, a mutation
to add a neuron gene, a mutation for perturbing the connection weights, and a
mutation that can alter the response curve of the activation function for each
neuron. The connection weight mutation works very similarly to the mutation
operators you’ve seen in the rest of the book, so I’ll not show you the code. It simply
steps through the connection weights and perturbs each one within predefined
limits based on a mutation rate. There is one difference however, this time there is a
probability the weight is replaced with a completely new weight. The chance of this
occurring is set by the parameter dProbabilityWeightReplaced.

An innovation occurs whenever new structure is added to a genome, either by
adding a link gene or by adding a neuron gene, and is simply a record of that
change. A global database of all the innovations is maintained—each innovation
having its own unique identification number. Each time a link or neuron addition
occurs, the database is referenced to see if that innovation has been previously

NEAT
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created. If it has, then the new gene is assigned the existing innovation ID number.
If not, a new innovation is created, added to the database, and the gene is tagged
with the newly created innovation ID.

As an example, imagine you are evolving a network that has two inputs and one
output. The network on the left of Figure 11.15 describes the basic structure each
member of the population possesses at the commencement of the run. The network
on the right shows the result of a mutation that adds a neuron to the network. When
neuron 4 is added, three innovations are created: an innovation for the neuron, and
innovations for each of the new connections between neurons 1-4 and 4-3. (The old
link gene between neurons 1 and 3 still exists in the genome, but it is disabled).

Figure 11.15

Mutation to add a neuron.

Each innovation is recorded in a SInnovation structure. The definition of this struc-
ture looks like this:

struct SInnovation

{

  //new neuron or new link?

  innov_type  InnovationType;

  int         InnovationID;

  int         NeuronIn;

  int         NeuronOut;

  int         NeuronID;

  neuron_type NeuronType;

  /*constructors and extraneous members omitted*/

};
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The innovation type can be either new_neuron or new_link. You can find the defini-
tions for SInnovation and the class CInnovation, which keeps track of all the innova-
tions, in the file CInnovation.h.

Because NEAT grows structure by adding neurons and links, all the genomes in the
initial population start off representing identical minimal topologies (but with
different connection weights). When the genomes are created, the program auto-
matically defines innovations for all the starting neurons and connections. As a
result, the innovation database prior to the mutation shown in Figure11.15 will look
a little like Table 11.1.

Input and output neurons are assigned a value of -1 for the in and out values to
avoid confusion. Similarly, new links are assigned a neuron ID of -1 (because they’re
not neurons! <smile>).

After the addition of neuron 4, shown in Figure 11.15, the innovation database will
have grown to include the new innovations shown in Table 11.2.

If at any time in the future a different genome stumbles across this identical muta-
tion (adding neuron number 4), the innovation database is referenced and the
correct innovation ID is assigned to the newly created gene. In this way, the genes
contain a historical record of any structural changes. This information is invaluable
for designing a valid crossover operator, as you shall see shortly.

Let me take you through the code for the AddLink and AddNeuron mutation operators.

Table 11.1 Innovations Before the Neuron Addition

Innovation ID Type In Out Neuron ID Neuron Type

1 new_neuron -1 -1 1 input

2 new_neuron -1 -1 2 input

3 new_neuron -1 -1 3 output

4 new_link 1 3 -1 none

5 new_link 2 3 -1 none

NEAT
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CGenome::AddLink
This operator adds one of three different kinds of links:

■ A forward link
■ A recurrent link
■ A looped recurrent link

Figure 11.16 shows an example of each type of link.

Here’s the code for adding links to genomes. I’ve added additional comments
where necessary.

void CGenome::AddLink(double       MutationRate,

                      double       ChanceOfLooped,

                      CInnovation  &innovation, //the database of innovations

                      int          NumTrysToFindLoop,

                      int          NumTrysToAddLink)

{

  //just return dependent on the mutation rate

  if (RandFloat() > MutationRate) return;

  //define holders for the two neurons to be linked. If we find two

  //valid neurons to link these values will become >= 0.

Table 11.2 Innovations After the Neuron Addition

Innovation ID Type In Out Neuron ID Neuron Type

1 new_neuron -1 -1 1 input

2 new_neuron -1 -1 2 input

3 new_neuron -1 -1 3 output

4 new_link 1 3 -1 none

5 new_link 2 3 -1 none

6 new_neuron 1 3 4 hidden

7 new_link 1 4 -1 none

8 new_link 4 3 -1 none
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  int ID_neuron1 = -1;

  int ID_neuron2 = -1;

  //flag set if a recurrent link is selected to be added

  bool bRecurrent = false;

  //first test to see if an attempt should be made to create a

  //link that loops back into the same neuron

  if (RandFloat() < ChanceOfLooped)

  {

    //YES: try NumTrysToFindLoop times to find a neuron that is not an

    //input or bias neuron and does not already have a loopback

    //connection

    while(NumTrysToFindLoop--)

    {

      //grab a random neuron

Figure 11.16

Different types of links.

NEAT
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      int NeuronPos = RandInt(m_iNumInputs+1, m_vecNeurons.size()-1);

      //check to make sure the neuron does not already have a loopback

      //link and that it is not an input or bias neuron

      if (!m_vecNeurons[NeuronPos].bRecurrent &&

         (m_vecNeurons[NeuronPos].NeuronType != bias) &&

         (m_vecNeurons[NeuronPos].NeuronType != input))

      {

        ID_neuron1 = ID_neuron2 = m_vecNeurons[NeuronPos].iID;

        m_vecNeurons[NeuronPos].bRecurrent = true;

        bRecurrent = true;

        NumTrysToFindLoop = 0;

      }

    }

  }

First, the code checks to see if there is a chance of a looped recurrent link being
added. If so, then it attempts NumTrysToFindLoop times to find an appropriate neuron. If
no neuron is found, the program continues to look for two unconnected neurons.

  else

  {

    //No: try to find two unlinked neurons. Make NumTrysToAddLink

    //attempts

    while(NumTrysToAddLink--)

    {

Because some networks will already have existing connections between all its avail-
able neurons, the code has to make sure it doesn’t enter an infinite loop when it
tries to find two unconnected neurons. To prevent this from happening, the pro-
gram only tries NumTrysToAddLink times to find two unlinked neurons. This value is set
in CParams.cpp.

      //choose two neurons, the second must not be an input or a bias

      ID_neuron1 = m_vecNeurons[RandInt(0, m_vecNeurons.size()-1)].iID;

      ID_neuron2 =
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      m_vecNeurons[RandInt(m_iNumInputs+1, m_vecNeurons.size()-1)].iID;

      if (ID_neuron2 == 2)

      {

        continue;

      }

      //make sure these two are not already linked and that they are

      //not the same neuron

      if ( !( DuplicateLink(ID_neuron1, ID_neuron2) ||

              (ID_neuron1 == ID_neuron2)))

      {

        NumTrysToAddLink = 0;

      }

      else

      {

        ID_neuron1 = -1;

        ID_neuron2 = -1;

      }

    }

  }

  //return if unsuccessful in finding a link

  if ( (ID_neuron1 < 0) || (ID_neuron2 < 0) )

  {

    return;

  }

  //check to see if we have already created this innovation

  int id = innovation.CheckInnovation(ID_neuron1, ID_neuron2, new_link);

Here, the code examines the innovation database to see if this link has already been
discovered by another genome. CheckInnovation returns either the ID number of the
innovation or, if the link is a new innovation, a negative value.

  //is this link recurrent?

  if (m_vecNeurons[GetElementPos(ID_neuron1)].dSplitY >

      m_vecNeurons[GetElementPos(ID_neuron2)].dSplitY)

NEAT
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  {

    bRecurrent = true;

  }

Here, the split values for the two neurons are compared to see if the link feeds
forward or backward.

  if ( id < 0)

  {

    //we need to create a new innovation

    innovation.CreateNewInnovation(ID_neuron1, ID_neuron2, new_link);

    //now create the new gene

    int id = innovation.NextNumber() - 1;

If the program enters this section of code, then the innovation is a new one. Before
the new gene is created, the innovation is added to the database and an identifica-
tion number is retrieved. The new gene will be tagged with this identification
number.

    SLinkGene NewGene(ID_neuron1,

                          ID_neuron2,

                          true,

                          id,

                          RandomClamped(),

                          bRecurrent);

    m_vecLinks.push_back(NewGene);

  }

  else

  {

    //the innovation has already been created so all we need to

    //do is create the new gene using the existing innovation ID

    SLinkGene NewGene(ID_neuron1,

                          ID_neuron2,

                          true,

                          id,

                          RandomClamped(),

                          bRecurrent);

    m_vecLinks.push_back(NewGene);
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  }

  return;

}

CGenome::AddNeuron
To add a neuron to a network, first a link must be chosen and then disabled. Two new
links are then created to join the new neuron to its neighbors. See Figure 11.17.

This means that every time a neuron is added, three innovations are created (or
repeated if they have already been discovered): one for the neuron gene and two
for the connection genes.

void CGenome::AddNeuron(double       MutationRate,

                        CInnovation  &innovations, //the innovation database

                        int          NumTrysToFindOldLink)

{

  //just return dependent on mutation rate

  if (RandFloat() > MutationRate) return;

  //if a valid link is found into which to insert the new neuron

  //this value is set to true.

Figure 11.17

Adding a neuron to a network.

NEAT
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  bool bDone = false;

  //this will hold the index into m_vecLinks of the chosen link gene

  int  ChosenLink = 0;

  //first a link is chosen to split. If the genome is small the code makes

  //sure one of the older links is split to ensure a chaining effect does

  //not occur. Here, if the genome contains less than 5 hidden neurons it

  //is considered to be too small to select a link at random.

  const int SizeThreshold = m_iNumInputs + m_iNumOutPuts + 5;

  if (m_vecLinks.size() < SizeThreshold)

  {

    while(NumTrysToFindOldLink--)

    {

      //choose a link with a bias towards the older links in the genome

      ChosenLink = RandInt(0, NumGenes()-1-(int)sqrt(NumGenes()));

      //make sure the link is enabled and that it is not a recurrent link

      //or has a bias input

      int FromNeuron = m_vecLinks[ChosenLink].FromNeuron;

      if ( (m_vecLinks[ChosenLink].bEnabled)    &&

           (!m_vecLinks[ChosenLink].bRecurrent) &&

           (m_vecNeurons[GetElementPos(FromNeuron)].NeuronType != bias))

       {

          bDone = true;

          NumTrysToFindOldLink = 0;

        }

    }

    if (!bDone)

    {

      //failed to find a decent link

      return;

    }

  }
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Early on in the development of the networks, a problem can occur where the same
link is split repeatedly creating a chaining effect, as shown in Figure 11.18.

Obviously, this is undesirable, so the following code checks the number of neurons
in the genome to see if the structure is below a certain size threshold. If it is, mea-
sures are taken to ensure that older links are selected in preference to newer ones.

  else

  {

    //the genome is of sufficient size for any link to be acceptable

    while (!bDone)

    {

      ChosenLink = RandInt(0, NumGenes()-1);

      //make sure the link is enabled and that it is not a recurrent link

      //or has a BIAS input

      int FromNeuron = m_vecLinks[ChosenLink].FromNeuron;

      if ( (m_vecLinks[ChosenLink].bEnabled) &&

           (!m_vecLinks[ChosenLink].bRecurrent) &&

           (m_vecNeurons[GetElementPos(FromNeuron)].NeuronType != bias))

      {

        bDone = true;

      }

    }

  }

  //disable this gene

  m_vecLinks[ChosenLink].bEnabled = false;

  //grab the weight from the gene (we want to use this for the weight of

  //one of the new links so the split does not disturb anything the

  //NN may have already learned

  double OriginalWeight = m_vecLinks[ChosenLink].dWeight;

Figure 11.18

The chaining effect.
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When a link is disabled and two new links are created, the old weight from the
disabled link is used as the weight for one of the new links, and the weight for the
other link is set to 1. In this way, the addition of a neuron creates as little disruption
as possible to any existing learned behavior. See Figure 11.19.

Figure 11.19

Assigning weights to the new link genes.

  //identify the neurons this link connects

  int from =  m_vecLinks[ChosenLink].FromNeuron;

  int to   =  m_vecLinks[ChosenLink].ToNeuron;

  //calculate the depth and width of the new neuron. We can use the depth

  //to see if the link feeds backwards or forwards

  double NewDepth = (m_vecNeurons[GetElementPos(from)].dSplitY +

                     m_vecNeurons[GetElementPos(to)].dSplitY) /2;

  double NewWidth = (m_vecNeurons[GetElementPos(from)].dSplitX +

                     m_vecNeurons[GetElementPos(to)].dSplitX) /2;

  //Now to see if this innovation has been created previously by

  //another member of the population

  int id = innovations.CheckInnovation(from,

                                       to,
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                                       new_neuron);

  /*it is possible for NEAT to repeatedly do the following:

      1. Find a link. Lets say we choose link 1 to 5

      2. Disable the link,

      3. Add a new neuron and two new links

      4. The link disabled in Step 2 may be re-enabled when this genome

         is recombined with a genome that has that link enabled.

      5  etc etc

  Therefore, the following checks to see if a neuron ID is already being used.

  If it is, the function creates a new innovation for the neuron. */

  if (id >= 0)

  {

    int NeuronID = innovations.GetNeuronID(id);

    if (AlreadyHaveThisNeuronID(NeuronID))

    {

      id = -1;

    }

  }

AlreadyHaveThisNeuronID returns true if (you guessed it) the genome already has a
neuron with an identical ID. If this is the case, then a new innovation needs to be
created, so id is reset to -1.

  if (id < 0)  //this is a new innovation

  {

    //add the innovation for the new neuron

    int NewNeuronID = innovations.CreateNewInnovation(from,

                                                      to,

                                                      new_neuron,

                                                      hidden,

                                                      NewWidth,

                                                      NewDepth);

    //Create the new neuron gene and add it.

    m_vecNeurons.push_back(SNeuronGene(hidden,
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                                       NewNeuronID,

                                       NewDepth,

                                       NewWidth));

    //Two new link innovations are required, one for each of the

    //new links created when this gene is split.

    //----------------------------------first link

    //get the next innovation ID

    int idLink1 = innovations.NextNumber();

    //create the new innovation

    innovations.CreateNewInnovation(from,

                                    NewNeuronID,

                                    new_link);

    //create the new gene

    SLinkGene link1(from,

                    NewNeuronID,

                    true,

                    idLink1,

                    1.0);

    m_vecLinks.push_back(link1);

    //----------------------------------second link

    //get the next innovation ID

    int idLink2 = innovations.NextNumber();

    //create the new innovation

    innovations.CreateNewInnovation(NewNeuronID,

                                    to,

                                    new_link);

    //create the new gene

    SLinkGene link2(NewNeuronID,
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                        to,

                        true,

                        idLink2,

                        OriginalWeight);

    m_vecLinks.push_back(link2);

  }

  else     //existing innovation

  {

    //this innovation has already been created so grab the relevant neuron

    //and link info from the innovation database

    int NewNeuronID = innovations.GetNeuronID(id);

    //get the innovation IDs for the two new link genes

    int idLink1 = innovations.CheckInnovation(from, NewNeuronID, new_link);

    int idLink2 = innovations.CheckInnovation(NewNeuronID, to, new_link);

    //this should never happen because the innovations *should* have already

    //occurred

    if ( (idLink1 < 0) || (idLink2 < 0) )

    {

      MessageBox(NULL, "Error in CGenome::AddNode", "Problem!", MB_OK);

      return;

    }

    //now we need to create 2 new genes to represent the new links

    SLinkGene link1(from, NewNeuronID, true, idLink1, 1.0);

    SLinkGene link2(NewNeuronID, to, true, idLink2, OriginalWeight);

    m_vecLinks.push_back(link1);

    m_vecLinks.push_back(link2);

    //create the new neuron

    SNeuronGene NewNeuron(hidden, NewNeuronID, NewDepth, NewWidth);

    //and add it
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    m_vecNeurons.push_back(NewNeuron);

  }

  return;

}

How Innovations Help in the Design of a Valid
Crossover Operator
As I discussed at the beginning of this chapter, the crossover operator for EANNs
can often be more trouble than it’s worth. In addition to ensuring that crossover
does not produce invalid networks, care must also be taken to avoid the competing
conventions problem. The designers of NEAT have managed to steer clear of both
these evils by using the innovation IDs as historical gene markers. Because each
innovation has a unique ID, the genes can be tracked chronologically, which means
similar genes in different genomes can be aligned prior to crossover. To see this
clearly, take a look at Figure 11.20.

Figure 11.20

Two phenotypes with
different innovations.
The gray genes are
disabled. The number at
the top of each gene is
that gene’s innovation
number.

The genes shown are the link genes for each phenotype. As you can see, the pheno-
types have very different topologies, yet we can easily create an offspring from them
by matching up the innovation numbers of the genomes before swapping over the
appropriate genes, as shown in Figure 11.21.

Those genes that do not match in the middle of the genomes are called disjoint genes,
whereas those that do not match at the end are called excess genes. Crossover pro-
ceeds a little like multi-point crossover, discussed earlier in the book. As the operator
iterates down the length of each genome, the offspring inherits matching genes
randomly. Disjoint and excess genes are only inherited from the fittest parent.
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This way, NEAT ensures only valid offspring are created and that the competing
convention problem is avoided. Neat, huh? (sorry, couldn’t resist! <smile>)

Let me show you the code for the crossover operator, so you can check out the
complete process.

CGenome Cga::Crossover(CGenome& mum, CGenome& dad)

{

  //first, calculate the genome we will using the disjoint/excess

  //genes from. This is the fittest genome. If they are of equal

  //fitness use the shorter (because we want to keep the networks

  //as small as possible)

  parent_type best;

  if (mum.Fitness() == dad.Fitness())

  {

    //if they are of equal fitness and length just choose one at

    //random

    if (mum.NumGenes() == dad.NumGenes())

    {

      best = (parent_type)RandInt(0, 1);

Figure 11.21

The crossover operator in action.

NEAT
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    }

    else

    {

      if (mum.NumGenes() < dad.NumGenes())

      {

        best = MUM;

      }

      else

      {

        best = DAD;

      }

    }

  }

  else

  {

    if (mum.Fitness() > dad.Fitness())

    {

      best = MUM;

    }

    else

    {

      best = DAD;

    }

  }

  //these vectors will hold the offspring's neurons and genes

  vector<SNeuronGene>  BabyNeurons;

  vector<SLinkGene>    BabyGenes;

  //temporary vector to store all added neuron IDs

  vector<int> vecNeurons;

  //create iterators so we can step through each parents genes and set

  //them to the first gene of each parent

  vector<SLinkGene>::iterator curMum = mum.StartOfGenes();
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  vector<SLinkGene>::iterator curDad = dad.StartOfGenes();

  //this will hold a copy of the gene we wish to add at each step

  SLinkGene SelectedGene;

  //step through each parents genes until we reach the end of both

  while (!((curMum == mum.EndOfGenes()) && (curDad == dad.EndOfGenes())))

  {

    //the end of mum's genes have been reached

    if ((curMum == mum.EndOfGenes())&&(curDad != dad.EndOfGenes()))

    {

      //if dad is fittest

      if (best == DAD)

      {

        //add dads genes

        SelectedGene = *curDad;

      }

      //move onto dad's next gene

      ++curDad;

    }

    //the end of dad's genes have been reached

    else if ( (curDad == dad.EndOfGenes()) && (curMum != mum.EndOfGenes()))

    {

      //if mum is fittest

      if (best == MUM)

      {

        //add mums genes

        SelectedGene = *curMum;

      }

      //move onto mum's next gene

      ++curMum;

    }

    //if mums innovation number is less than dads

    else if (curMum->InnovationID < curDad->InnovationID)
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    {

      //if mum is fittest add gene

      if (best == MUM)

      {

        SelectedGene = *curMum;

      }

      //move onto mum's next gene

      ++curMum;

    }

    //if dad's innovation number is less than mum's

    else if (curDad->InnovationID < curMum->InnovationID)

    {

      //if dad is fittest add gene

      if (best = DAD)

      {

        SelectedGene = *curDad;

      }

      //move onto dad's next gene

      ++curDad;

    }

    //if innovation numbers are the same

    else if (curDad->InnovationID == curMum->InnovationID)

    {

      //grab a gene from either parent

      if (RandFloat() < 0.5f)

      {

        SelectedGene = *curMum;

      }

      else

      {

        SelectedGene = *curDad;

      }

      //move onto next gene of each parent
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      ++curMum;

      ++curDad;

    }

    //add the selected gene if not already added

    if (BabyGenes.size() == 0)

    {

      BabyGenes.push_back(SelectedGene);

    }

    else

    {

      if (BabyGenes[BabyGenes.size()-1].InnovationID !=

          SelectedGene.InnovationID)

      {

        BabyGenes.push_back(SelectedGene);

      }

    }

    //Check if we already have the neurons referred to in SelectedGene.

    //If not, they need to be added.

    AddNeuronID(SelectedGene.FromNeuron, vecNeurons);

    AddNeuronID(SelectedGene.ToNeuron, vecNeurons);

  }//end while

  //now create the required neurons. First sort them into order

  sort(vecNeurons.begin(), vecNeurons.end());

  for (int i=0; i<vecNeurons.size(); i++)

  {

    BabyNeurons.push_back(m_pInnovation->CreateNeuronFromID(vecNeurons[i]));

  }

  //finally, create the genome

  CGenome babyGenome(m_iNextGenomeID++,

                     BabyNeurons,

                     BabyGenes,

                     mum.NumInputs(),
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                     mum.NumOutputs());

  return babyGenome;

}

Speciation
When structure is added to a genome, either by adding a new connection or a new
neuron, it’s quite likely the new individual will be a poor performer until it has a
chance to evolve and establish itself among the population. Unfortunately, this
means there is a high probability of the new individual dying out before it has time
to evolve any potentially interesting behavior. This is obviously undesirable—some
way has to be found of protecting the new innovation in the early days of its evolu-
tion. This is where simulating speciation comes in handy…

Speciation, as the name suggests, is the separation of a population into species. The
question of what exactly is a species, is still one the biologists (and other scientists)
are arguing over, but one of the popular definitions is:

A species is a group of populations with similar characteristics that are capable of
successfully interbreeding with each other to produce healthy, fertile offspring, but are
reproductively isolated from other species.

In nature, a common mechanism for speciation is provided by changes in geogra-
phy. Imagine a widespread population of animals, let’s call them “critters”, which
eventually come to be divided by some geographical change in their environment,
like the creation of a mountain ridge, for example. Over time, these populations
will diversify because of different natural selection pressures and because of differ-
ent mutations within their chromosomes. On one side of the mountain, the critters
may start growing thicker fur to cope with a colder climate, and on the other, they
may adapt to become better at avoiding the multitude of predators that lurk there.
Eventually, the two populations will have changed so much from each other that if
they ever did come into contact again, it would be impossible for them to mate
successfully and have offspring. It’s at this point they can be considered two differ-
ent species.

NEAT simulates speciation to provide evolutionary niches for any new topological
change. This way, similar individuals only have to compete among themselves and
not with the rest of the population. Therefore, they are protected somewhat from
premature extinction. A record of all the species created is kept in a class called—
wait for it—CSpecies. Each epoch, every individual is tested against the first member
in each species and a compatibility distance is calculated. If the compatibility distance
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  //step down each genomes length.

  int g1 = 0;

  int g2 = 0;

  while ( (g1 < m_vecLinks.size()-1) || (g2 < genome.m_vecLinks.size()-1) )

  {

    //we've reached the end of genome1 but not genome2 so increment

    //the excess score

    if (g1 == m_vecLinks.size()-1)

    {

      ++g2;

      ++NumExcess;

      continue;

    }

    //and vice versa

    if (g2 == genome.m_vecLinks.size()-1)

    {

      ++g1;

      ++NumExcess;

      continue;

    }

    //get innovation numbers for each gene at this point

    int id1 = m_vecLinks[g1].InnovationID;

    int id2 = genome.m_vecLinks[g2].InnovationID;

    //innovation numbers are identical so increase the matched score

    if (id1 == id2)

    {

      ++g1;

      ++g2;

      ++NumMatched;

      //get the weight difference between these two genes

      WeightDifference += fabs(m_vecLinks[g1].dWeight –

                          genome.m_vecLinks[g2].dWeight);

Team LRN



389

    }

    //innovation numbers are different so increment the disjoint score

    if (id1 < id2)

    {

      ++NumDisjoint;

      ++g1;

    }

    if (id1 > id2)

    {

      ++NumDisjoint;

      ++g2;

    }

  }//end while

  //get the length of the longest genome

  int longest = genome.NumGenes();

  if (NumGenes() > longest)

  {

    longest = NumGenes();

  }

  //these are multipliers used to tweak the final score.

  const double mDisjoint = 1;

  const double mExcess   = 1;

  const double mMatched  = 0.4;

  //finally calculate the scores

  double score = (mExcess   * NumExcess / ( double)longest) +

                 (mDisjoint * NumDisjoint / (double)longest) +

                 (mMatched  * WeightDifference / NumMatched);

  return score;

}
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The CSpecies Class
Once an individual has been assigned to a species, it may only mate with other
members of the same species. However, speciation alone does not protect new
innovation within the population. To do that, we must somehow find a way of
adjusting the fitnesses of each individual in a way that aids younger, more diverse
genomes to remain active for a reasonable length of time. The technique NEAT
uses to do this is called explicit fitness sharing.

As I discussed in Chapter 5, “Building a
Better Genetic Algorithm,” fitness
sharing is a way of retaining diversity by
sharing the fitness scores of individuals
with similar genomes. With NEAT,
fitness scores are shared by members of
the same species. In practice, this means
that each individual’s score is divided by
the size of the species before any selec-
tion occurs. What this boils down to is
that species which grow large are penal-
ized for their size, whereas smaller
species are given a “foot up” in the
evolutionary race, so to speak.

In addition, young species are given a fitness boost prior to the fitness sharing
calculation. Likewise, old species are penalized. If a species does not show an
improvement over a certain number of generations (the default is 15), then it is
killed off. The exception to this is if the species contains the best performing
individual found so far, in which case the species is allowed to live.

I think the best thing I can do to help clarify all the information I’ve just thrown at
you is to show you the method that calculates all the fitness adjustments. First
though, let me take a moment to list the CSpecies class definition:

class CSpecies

{

private:

  //keep a local copy of the first member of this species

NOTE
In the original implementation of
NEAT, the designers incorporated
inter-species mating although the
probability of this happening was set
very low. Although I have never
observed any noticeable performance
increase when using it, it may be a
worthwhile exercise for you to try this
out when you start fooling around
with your own implementations.
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  CGenome           m_Leader;

  //pointers to all the genomes within this species

  vector<CGenome*>  m_vecMembers;

  //the species needs an identification number

  int               m_iSpeciesID;

  //best fitness found so far by this species

  double            m_dBestFitness;

  //average fitness of the species

  double            m_dAvFitness;

  //generations since fitness has improved, we can use

  //this info to kill off a species if required

  int               m_iGensNoImprovement;

  //age of species

  int               m_iAge;

  //how many of this species should be spawned for

  //the next population

  double            m_dSpawnsRqd;

public:

  CSpecies(CGenome &FirstOrg, int SpeciesID);

  //this method boosts the fitnesses of the young, penalizes the

  //fitnesses of the old and then performs fitness sharing over

  //all the members of the species

  void    AdjustFitnesses();

  //adds a new individual to the species
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  void    AddMember(CGenome& new_org);

  void    Purge();

  //calculates how many offspring this species should spawn

  void    CalculateSpawnAmount();

  //spawns an individual from the species selected at random

  //from the best CParams::dSurvivalRate percent

  CGenome Spawn();

  //--------------------------------------accessor methods

  CGenome  Leader()const{return m_Leader;}

  double   NumToSpawn()const{return m_dSpawnsRqd;}

  int      NumMembers()const{return m_vecMembers.size();}

  int      GensNoImprovement()const{return m_iGensNoImprovement;}

  int      ID()const{return m_iSpeciesID;}

  double   SpeciesLeaderFitness()const{return m_Leader.Fitness();}

  double   BestFitness()const{return m_dBestFitness;}

  int      Age()const{return m_iAge;}

  //so we can sort species by best fitness. Largest first

  friend bool operator<(const CSpecies &lhs, const CSpecies &rhs)

  {

    return lhs.m_dBestFitness > rhs.m_dBestFitness;

  }

};

And now for the method that adjusts the fitness scores:

void CSpecies::AdjustFitnesses()
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{

  double total = 0;

  for (int gen=0; gen<m_vecMembers.size(); ++gen)

  {

    double fitness = m_vecMembers[gen]->Fitness();

    //boost the fitness scores if the species is young

    if (m_iAge < CParams::iYoungBonusAgeThreshhold)

    {

      fitness *= CParams::dYoungFitnessBonus;

    }

    //punish older species

    if (m_iAge > CParams::iOldAgeThreshold)

    {

      fitness *= CParams::dOldAgePenalty;

    }

    total += fitness;

    //apply fitness sharing to adjusted fitnesses

    double AdjustedFitness = fitness/m_vecMembers.size();

    m_vecMembers[gen]->SetAdjFitness(AdjustedFitness);

  }

}

The Cga Epoch Method
Because the population is speciated, the epoch method for the NEAT code is
somewhat different (and a hell of a lot longer!) than the epoch functions you’ve
seen previously in this book. Epoch is part of the Cga class, which is the class that
manipulates all the genomes, species, and innovations.

Let me talk you through the Epoch method so you understand exactly what’s going
on at each stage of the process:

vector<CNeuralNet*> Cga::Epoch(const vector<double> &FitnessScores)

{
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  //first check to make sure we have the correct amount of fitness scores

  if (FitnessScores.size() != m_vecGenomes.size())

  {

    MessageBox(NULL,"Cga::Epoch(scores/ genomes mismatch)!","Error", MB_OK);

  }

  ResetAndKill();

First of all, any phenotypes created during the previous generation are deleted. The
program then examines each species in turn and deletes all of its members apart
from the best performing one. (You use this individual as the genome to be tested
against when the compatibility distances are calculated). If a species hasn’t made
any fitness improvement in CParams::iNumGensAllowedNoImprovement generations, the
species is killed off.

  //update the genomes with the fitnesses scored in the last run

  for (int gen=0; gen<m_vecGenomes.size(); ++gen)

  {

    m_vecGenomes[gen].SetFitness(FitnessScores[gen]);

  }

  //sort genomes and keep a record of the best performers

  SortAndRecord();

  //separate the population into species of similar topology, adjust

  //fitnesses and calculate spawn levels

  SpeciateAndCalculateSpawnLevels();

SpeciateAndCalculateSpawnLevels commences by calculating the compatibility distance
of each genome against the representative genome from each live species. If the
value is within a set tolerance, the individual is added to that species. If no species
match is found, then a new species is created and the genome added to that.

When all the genomes have been assigned to a species
SpeciateAndCalculateSpawnLevels calls the member function AdjustSpeciesFitnesses to
adjust and share the fitness scores as discussed previously.

Next, SpeciateAndCalculateSpawnLevels calculates how many offspring each individual
is predicted to spawn into the new generation. This is a floating-point value calcu-
lated by dividing each genome’s adjusted fitness score with the average adjusted
fitness score for the entire population. For example, if a genome had an adjusted
fitness score of 4.4 and the average is 8.0, then the genome should spawn 0.525
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offspring. Of course, it’s impossible for an organism to spawn a fractional part of
itself, but all the individual spawn amounts for the members of each species are
summed to calculate an overall spawn amount for that species. Table 11.3 may help
clear up any confusion you may have with this process. It shows typical spawn values
for a small population of 20 individuals. The epoch function can now simply iterate
through each species and spawn the required amount of offspring.

To continue with the Epoch method…

  //this will hold the new population of genomes

  vector<CGenome> NewPop;

  //request the offspring from each species. The number of children to

  //spawn is a double which we need to convert to an int.

  int NumSpawnedSoFar = 0;

  CGenome baby;

  //now to iterate through each species selecting offspring to be mated and

  //mutated

  for (int spc=0; spc<m_vecSpecies.size(); ++spc)

  {

    //because of the number to spawn from each species is a double

    //rounded up or down to an integer it is possible to get an overflow

    //of genomes spawned. This statement just makes sure that doesn't

    //happen

    if (NumSpawnedSoFar < CParams::iNumSweepers)

    {

      //this is the amount of offspring this species is required to

      // spawn. Rounded simply rounds the double up or down.

      int NumToSpawn = Rounded(m_vecSpecies[spc].NumToSpawn());

      bool bChosenBestYet = false;

      while (NumToSpawn--)

      {

        //first grab the best performing genome from this species and transfer

        //to the new population without mutation. This provides per species

        //elitism

        if (!bChosenBestYet)

        {
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          baby = m_vecSpecies[spc].Leader();

          bChosenBestYet = true;

        }

        else

        {

          //if the number of individuals in this species is only one

          //then we can only perform mutation

          if (m_vecSpecies[spc].NumMembers() == 1)

          {

            //spawn a child

            baby = m_vecSpecies[spc].Spawn();

          }

          //if greater than one we can use the crossover operator

          else

          {

            //spawn1

            CGenome g1 = m_vecSpecies[spc].Spawn();

            if (RandFloat() < CParams::dCrossoverRate)

            {

              //spawn2, make sure it's not the same as g1

              CGenome g2 = m_vecSpecies[spc].Spawn();

              // number of attempts at finding a different genome

              int NumAttempts = 5;

              while ( (g1.ID() == g2.ID()) && (NumAttempts--) )

              {

                g2 = m_vecSpecies[spc].Spawn();

              }

              if (g1.ID() != g2.ID())

              {

                baby = Crossover(g1, g2);

              }
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Table 11.3 Species Spawn Amounts

Species 0

Genome ID Fitness Adjusted Fitness Spawn Amount

88 100 14.44 1.80296

103 99 14.3 1.78493

 94 99 14.3 1.78493

 61 92 13.28 1.65873

106 37 5.344 0.667096

108 34 4.911 0.613007

107 32 4.622 0.576948

105 11 1.588 0.198326

104 7 1.011 0.126207

Total offspring for this species to spawn: 9.21314

Species 1

Genome ID Fitness Adjusted Fitness Spawn Amount

112 43 7.980 0.99678

110 43 7.985 0.99678

116 42 7.8 0.973599

 68 41 7.614 0.950419

111 37 6.871 0.857695

115 37 6.871 0.857695

113 17 3.157 0.394076

Total offspring for this species to spawn: 6.02704

Species 2

Genome ID Fitness Adjusted Fitness Spawn Amount

20 59 25.56 3.19124

100 14 6.066 0.757244

116 9 3.9 0.4868

Total offspring for this species to spawn: 4.43529
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Because the number of individuals in a species may be small and because only the
best 20% (default value) are retained to be parents, it is sometimes impossible (or
slow) to find a second genome to mate with. The code shown here tries five times to
find a different genome and then aborts.

            }

            else

            {

              baby = g1;

            }

          }

          ++m_iNextGenomeID;

          baby.SetID(m_iNextGenomeID);

          //now we have a spawned child lets mutate it! First there is the

          //chance a neuron may be added

          if (baby.NumNeurons() < CParams::iMaxPermittedNeurons)

          {

            baby.AddNeuron(CParams::dChanceAddNode,

                           *m_pInnovation,

                           CParams::iNumTrysToFindOldLink);

          }

          //now there's the chance a link may be added

          baby.AddLink(CParams::dChanceAddLink,

                       CParams::dChanceAddRecurrentLink,

                       *m_pInnovation,

                       CParams::iNumTrysToFindLoopedLink,

                       CParams::iNumAddLinkAttempts);

          //mutate the weights

          baby.MutateWeights(CParams::dMutationRate,

                             CParams::dProbabilityWeightReplaced,

                             CParams::dMaxWeightPerturbation);

          //mutate the activation response
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          baby.MutateActivationResponse(CParams::dActivationMutationRate,

                                        CParams::dMaxActivationPerturbation);

        }

        //sort the babies genes by their innovation numbers

        baby.SortGenes();

        //add to new pop

        NewPop.push_back(baby);

        ++NumSpawnedSoFar;

        if (NumSpawnedSoFar == CParams::iNumSweepers)

        {

          NumToSpawn = 0;

        }

      }//end while

    }//end if

  }//next species

  //if there is an underflow due to a rounding error when adding up all

  //the species spawn amounts, and the amount of offspring falls short of

  //the population size, additional children need to be created and added

  //to the new population. This is achieved simply, by using tournament

  //selection over the entire population.

  if (NumSpawnedSoFar < CParams::iNumSweepers)

  {

    //calculate the amount of additional children required

    int Rqd = CParams::iNumSweepers - NumSpawnedSoFar;

    //grab them

    while (Rqd--)

    {

      NewPop.push_back(TournamentSelection(m_iPopSize/5));

    }
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  }

  //replace the current population with the new one

  m_vecGenomes = NewPop;

  //create the new phenotypes

  vector<CNeuralNet*> new_phenotypes;

  for (gen=0; gen<m_vecGenomes.size(); ++gen)

  {

    //calculate max network depth

    int depth = CalculateNetDepth(m_vecGenomes[gen]);

    CNeuralNet* phenotype = m_vecGenomes[gen].CreatePhenotype(depth);

    new_phenotypes.push_back(phenotype);

  }

  //increase generation counter

  ++m_iGeneration;

  return new_phenotypes;

}

Converting the Genome into a Phenotype
Well, I’ve covered just about everything except how a genome is converted into a
phenotype. We’re nearly there now! Phenotypes use different neuron and link
structures than the genome. They can be found in phenotype.h, and look like this:

The SLink Structure
The structure for the links is very simple. It just has pointers to the two neurons it
connects and a connection weight. The bool value, bRecurrent, is used by the draw-
ing routine in CNeuralNet to help render a network into a window.

struct SLink

{

  //pointers to the neurons this link connects
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  CNeuron*  pIn;

  CNeuron*  pOut;

  //the connection weight

  double  dWeight;

  //is this link a recurrent link?

  bool    bRecurrent;

  SLink(double dW, CNeuron* pIn, CNeuron* pOut, bool bRec):dWeight(dW),

                                                           pIn(pIn),

                                                           pOut(pOut),

                                                           bRecurrent(bRec)

  {}

};

The SNeuron Structure
The neuron defined by SNeuron contains much more information than its little
brother SNeuronGene. In addition, it holds the values for the sum of all the inputs ×
weights, this value after it’s been put through the activation function (in other
words, the output from this neuron), and two std::vectors—one for storing the
links into the neuron, and the other for storing the links out of the neuron.

struct SNeuron

{

   //all the links coming into this neuron

  vector<SLink> vecLinksIn;

  //and out

  vector<SLink> vecLinksOut;

  //sum of weights x inputs

  double        dSumActivation;

  //the output from this neuron

  double        dOutput;

  //what type of neuron is this?
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  neuron_type   NeuronType;

  //its identification number

  int           iNeuronID;

  //sets the curvature of the sigmoid function

  double        dActivationResponse;

  //used in visualization of the phenotype

  int           iPosX,   iPosY;

  double        dSplitY, dSplitX;

  //-- ctors

  SNeuron(neuron_type type,

          int         id,

          double      y,

          double      x,

          double      ActResponse):NeuronType(type),

                                   iNeuronID(id),

                                   dSumActivation(0),

                                   dOutput(0),

                                   iPosX(0),

                                   iPosY(0),

                                   dSplitY(y),

                                   dSplitX(x),

                                   dActivationResponse(ActResponse)

  {}

};

Putting the Bits Together
The method that actually creates all the SLinks and SNeurons required for a pheno-
type is CGenome::CreatePhenotype. This function iterates through the genome and
creates any appropriate neurons and all the required links required for pointing to
those neurons. It then creates an instance of the CNeuralNet class. I’ll be discussing
the CNeuralNet class immediately after you’ve had a good look at the following code.

CNeuralNet* CGenome::CreatePhenotype(int depth)

{
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  //first make sure there is no existing phenotype for this genome

  DeletePhenotype();

  //this will hold all the neurons required for the phenotype

  vector<SNeuron*>  vecNeurons;

  //first, create all the required neurons

  for (int i=0; i<m_vecNeurons.size(); i++)

  {

    SNeuron* pNeuron = new SNeuron(m_vecNeurons[i].NeuronType,

                                   m_vecNeurons[i].iID,

                                   m_vecNeurons[i].dSplitY,

                                   m_vecNeurons[i].dSplitX,

                                   m_vecNeurons[i].dActivationResponse);

    vecNeurons.push_back(pNeuron);

  }

  //now to create the links.

  for (int cGene=0; cGene<m_vecLinks.size(); ++cGene)

  {

    //make sure the link gene is enabled before the connection is created

    if (m_vecLinks[cGene].bEnabled)

    {

      //get the pointers to the relevant neurons

      int element         = GetElementPos(m_vecLinks[cGene].FromNeuron);

      SNeuron* FromNeuron = vecNeurons[element];

      element           = GetElementPos(m_vecLinks[cGene].ToNeuron);

      SNeuron* ToNeuron = vecNeurons[element];

      //create a link between those two neurons and assign the weight stored

      //in the gene

      SLink tmpLink(m_vecLinks[cGene].dWeight,

                    FromNeuron,

                    ToNeuron,

                    m_vecLinks[cGene].bRecurrent);

      //add new links to neuron
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      FromNeuron->vecLinksOut.push_back(tmpLink);

      ToNeuron->vecLinksIn.push_back(tmpLink);

    }

  }

  //now the neurons contain all the connectivity information, a neural

  //network may be created from them.

  m_pPhenotype = new CNeuralNet(vecNeurons, depth);

  return m_pPhenotype;

}

The CNeuralNet Class
This class is pretty simple. It contains a std::vector of the neurons that comprise the
network, a method to update the network and retrieve its output, and a method to
draw a representation of the network into a user-specified window. The value
m_iDepth is the depth of the network calculated from the splitY values of its neuron
genes, as discussed earlier. You’ll see how this value is used in a moment. The
enumerated type, run_type, is especially important because this is how the user
chooses how the network is updated. I’ll elaborate on this after you’ve taken a
moment to look at the class definition.

class CNeuralNet

{

private:

  vector<SNeuron*>  m_vecpNeurons;

  //the depth of the network

  int               m_iDepth;

public:

  CNeuralNet(vector<SNeuron*> neurons,
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             int              depth);

  ~CNeuralNet();

  //you have to select one of these types when updating the network

  //If snapshot is chosen the network depth is used to completely

  //flush the inputs through the network. active just updates the

  //network each time-step

  enum run_type{snapshot, active};

  //update network for this clock cycle

  vector<double>  Update(const vector<double> &inputs, const run_type type);

  //draws a graphical representation of the network to a user specified window

  void            DrawNet(HDC &surface,

                          int cxLeft,

                          int cxRight,

                          int cyTop,

                          int cyBot);

};

Up until now, all the networks you’ve seen have run the inputs through the com-
plete network, layer by layer, until an output is produced. With NEAT however, a
network can assume any topology with connections between neurons leading
backward, forward, or even looping back on themselves. This makes it next to
impossible to use a layer-based update function because there aren’t really any
layers! Because of this, the NEAT update function runs in one of two modes:

active: When using the active update mode, each neuron adds up all the activations
calculated during the preceeding time-step from all its incoming neurons. This means
that the activation values, instead of being flushed through the entire network like a
conventional ANN each time-step, only travel from one neuron to the next. To get
the same result as a layer-based method, this process would have to be repeated as
many times as the network is deep in order to flush all the neuron activations
completely through the network. This mode is appropriate to use if you are using
the network dynamically (like for controlling the minesweepers for instance).

snapshot: If, however, you want NEAT’s update function to behave like a regular
neural network update function, you have to ensure that the activations are flushed
all the way through from the input neurons to the output neurons. To facilitate this,

NEAT
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Update iterates through all the neurons as many times as the network is deep before
spitting out the output. This is why calculating those splitY values was so important.
You would use this type of update if you were to train a NEAT network using a
training set. (Like we used for the mouse gesture recognition program in Chapter
9, “A Supervised Training Approach”).

Here is the code for CNeuralNet::Update, which should help clarify the process.

vector<double> CNeuralNet::Update(const vector<double> &inputs,

                                  const run_type        type)

{

  //create a vector to put the outputs into

  vector<double>  outputs;

  //if the mode is snapshot then we require all the neurons to be

  //iterated through as many times as the network is deep. If the

  //mode is set to active the method can return an output after

  //just one iteration

  int FlushCount = 0;

  if (type == snapshot)

  {

    FlushCount = m_iDepth;

  }

  else

  {

    FlushCount = 1;

  }

  //iterate through the network FlushCount times

  for (int i=0; i<FlushCount; ++i)

  {

    //clear the output vector

    outputs.clear();

    //this is an index into the current neuron

    int cNeuron = 0;

    //first set the outputs of the 'input' neurons to be equal

    //to the values passed into the function in inputs
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    while (m_vecpNeurons[cNeuron]->NeuronType == input)

    {

      m_vecpNeurons[cNeuron]->dOutput = inputs[cNeuron];

      ++cNeuron;

    }

    //set the output of the bias to 1

    m_vecpNeurons[cNeuron++]->dOutput = 1;

    //then we step through the network a neuron at a time

    while (cNeuron < m_vecpNeurons.size())

    {

      //this will hold the sum of all the inputs x weights

      double sum = 0;

      //sum this neuron's inputs by iterating through all the links into

      //the neuron

      for (int lnk=0; lnk<m_vecpNeurons[cNeuron]->vecLinksIn.size(); ++lnk)

      {

        //get this link's weight

        double Weight = m_vecpNeurons[cNeuron]->vecLinksIn[lnk].dWeight;

        //get the output from the neuron this link is coming from

        double NeuronOutput =

        m_vecpNeurons[cNeuron]->vecLinksIn[lnk].pIn->dOutput;

        //add to sum

        sum += Weight * NeuronOutput;

      }

      //now put the sum through the activation function and assign the

      //value to this neuron's output

      m_vecpNeurons[cNeuron]->dOutput =

      Sigmoid(sum, m_vecpNeurons[cNeuron]->dActivationResponse);

      if (m_vecpNeurons[cNeuron]->NeuronType == output)

      {

        //add to our outputs

NEAT
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        outputs.push_back(m_vecpNeurons[cNeuron]->dOutput);

      }

      //next neuron

      ++cNeuron;

    }

  }//next iteration through the network

  //the network outputs need to be reset if this type of update is performed

  //otherwise it is possible for dependencies to be built on the order

  //the training data is presented

  if (type == snapshot)

  {

    for (int n=0; n<m_vecpNeurons.size(); ++n)

    {

      m_vecpNeurons[n]->dOutput = 0;

    }

  }

  //return the outputs

  return outputs;

}

Note that the outputs of the network must be reset to zero before the function
returns if the snapshot method of updating is required. This is to prevent any depen-
dencies on the order the training data is presented. (Training data is usually pre-
sented to a network sequentially because doing it randomly would slow down the
learning considerably.)

For example, imagine presenting a training set consisting of a number of points
lying on the circumference of a circle. If the network is not flushed, NEAT might
add recurrent connections that make use of the data stored from the previous
update. This would be okay if you wanted a network that simply mapped inputs to
outputs, but most often you will require the network to generalize.

Running the Demo Program
To demonstrate NEAT in practice, I’ve plugged in the minesweeper code from
Chapter 8, “Giving Your Bot Senses.” I think you’ll be pleasantly surprised by how
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NEAT performs in comparison! You can either compile it yourself or run the
executable NEAT Sweepers.exe straight from the relevant folder on the CD.

As before, the F key speeds up the evolution, the R key resets it, and the B key shows
the best four minesweepers from the previous generation. Pressing the keys 1
through 4 shows the minesweeper’s “trails”.

This time there is also an additional window created in which the phenotypes of the
four best minesweepers are drawn, as shown in Figure 11.22.

Excitory forward connections are shown in gray and inhibitory forward connections
are shown in yellow. Excitory recurrent connections are shown in red and inhibitory
connections are shown in blue. Any connections from the bias neuron are shown in
green. The thickness of the line gives an indication of the magnitude of the connec-
tion weight.

Table 11.4 lists the default settings for this project:

Summary
You’ve come a long way in this chapter, and learned a lot in the process. To aid your
understanding, the implementation of NEAT I describe in this chapter has been kept
simple and it would be worthwhile for the curious to examine Ken Stanley and Risto
Miikkulainen’s original code to gain a fuller insight into the mechanisms of NEAT.
You can find the source code and other articles about NEAT via Ken’s Web site at:

http://www.cs.utexas.edu/users/kstanley/

Figure 11.22

NEAT Sweepers in
action.

Summary
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Table 11.4 Default Project Settings for NEAT Sweepers

Parameters for the Minesweepers

Parameter Setting

Num sensors 5

Sensor range 25

Num minesweepers 50

Max turn rate 0.2

Scale 5

Parameters Affecting Evolution

Parameter Setting

Num ticks per epoch 2000

Chance of adding a link 0.07

Chance of adding a node 0.03

Chance of adding a recurrent link 0.05

Crossover rate 0.7

Weight mutation rate 0.2

Max mutation perturbation 0.5

Probability a weight is replaced 0.1

Probability the activation response is mutated 0.1

Species compatibility threshold 0.26

Species old age threshold 50

Species old age penalty 0.7

Species youth threshold 10

Species youth bonus 1.3
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Stuff to Try
1. Add code to automatically keep the number of species within user-defined

boundaries.

2. Have a go at designing some different mutation operators.

3. Add interspecies mating.

4. Have a go at coding one of the alternative methods for evolving network
topology described at the beginning of the chapter.

Stuff to Try
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416 A. Web Resources

T he World Wide Web is undoubtedly the single biggest resource for AI-related
information. Here are a few of the best resources. If you get stuck, try these

sources first because one or more of them is almost certain to help you.

URLs

www.gameai.com
A great site devoted to games AI run by the ever popular Steve “Ferretman” Wood-
cock. This is a terrific starting point for any games related AI/ALife query.

www.ai-depot.com
Another terrific resource. A great place to keep up to date with any AI-related news
and it contains many useful tutorials on all things AI related.

www.generation5.org
Not strictly game related, but this Web site contains a wealth of useful information
and tutorials.

www.citeseer.com
The Citeseer Scientific Literature Digital Library—an amazing source of docu-
ments. If you need to find a paper, here’s the best place to start looking for it. This
place is my favorite source of information on the Internet.

www.gamedev.net
This Web site has many archived articles and tutorials. It also hosts one of the best
AI forums on the Internet.
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417Newsgroups

www.ai-junkie.com
My own little Web site. It used to be known as “Stimulate” in the old days, but I felt
it needed a new name and a new look. If you have any questions regarding the
techniques described in this book, feel free to ask away at the forum.

www.google.com
Had to include this search engine here because so many people still don’t seem to
know how to use it! Almost everything I research on the Internet starts with this
link. If you don’t use it, then start!

Newsgroups
The Usenet is often overlooked by games programmers, but it can be an extremely
valuable source of information, help, and most importantly, inspiration. If AI
excites you, then most of the following should be of interest.

comp.ai.neural-nets

comp.ai.genetic

comp.ai.games

comp.ai.alife
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Neural Computing

R Beale & T Jackson

Has some interesting pages.

Genetic Algorithms in Search, Optimization and Machine Learning

David E. Goldberg
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for Gödel Escher Bach, An Eternal Golden Braid first. I believe it’s just been reprinted.

Artificial Life

Stephen Levy

If you only buy one book on artificial life, buy this one. Levy is a superb writer and
although there’s not a vast amount of depth, he covers a lot of ground in an ex-
tremely relaxed way. I couldn’t put it down until I finished it.
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Creation: Life and How to Make It

Steve Grand

A bit waffly and sometimes a little unfocused, this book is still worth reading. Grand
is the guy who programmed Creatures and this book is an attempt to explain the
mechanics of the Norms (that’s what he called his creatures in the game) and also
Steve’s thoughts on life and consciousness in general.
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This is similar to the Levy book but is focussed much more on the early history of
computers and artificial life. Another great read.
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Roger Penrose

This book covers a lot of ground in an attempt to explain why Penrose believes
machines will never be conscious. You may disagree with his conclusion but this
book is still a very interesting read.

Bloody-Good SF Novels!
Just in case you need some lighter reading, I thought I’d include some of the great
sci-fi novels I’ve read over the last few years—every one a page turner.

The Skinner

Neal Asher

Gridlinked

Neil Asher

Bloody-Good SF Novels!
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426 C. What’s on the CD

T he source code for each demo is included on the accompanying CD, along
with pre-compiled executables for those of you with twitchy fingers. Each

chapter has its own folder so you shouldn’t have any problems finding the relevant
project files.

Building the demos is a piece of cake. First, make sure you copy the files to your
hard drive. If you use Microsoft Visual Studio, then just click on the relevant
workspace and away you go. If you use an alternative compiler, create a new win32
project, make sure winmm.lib is added in your project settings, and then add the
relevant source and resource files from the project folder before clicking the com-
pile button.

I’ve also included a demo of Colin McRae Rally 2 on the CD. In addition to being a
whole load of fun, this game uses neural network technology to control the com-
puter-driven opponents. Here’s what Jeff Hannan, the AI man behind the game had
to say in an interview with James Matthews of Generation5.

Q. What kind of flexibility did the neural networks give you in terms of AI
design and playability? Did the networks control all aspects of the AI?

A. Obviously the biggest challenge was actually getting a car to successfully drive round
the track in a quick time. Once that was achieved, I was then able to adjust racing lines
almost at will, to add a bit of character to the drivers. The neural net was able to drive
the new lines, without any new training.

The neural nets are constructed with the simple aim of keeping the car to the racing line.
They are effectively performing that skill. I felt that higher-level functions like overtaking
or recovering from crashes should be separated from this core activity. In fact, I was able
to work out fairly simple rules to perform these tasks.

Q. Which game genres do you see “mainstream AI” (neural networks, genetic
algorithms, etc.) seeping into the most, now? In the future?

A. Neural networks and genetic algorithms are powerful techniques that can be applied
in general to any suitable problem, not just AI. Therefore, any game genre could make
use of them. It would be ridiculous not to consider them for a difficult problem. However,
experimentation is generally required. They help you find a solution, rather than give it
to you on a plate.
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With my experience of using neural nets, I’d say that they are particularly good at skills.
When a human performs a skill, it is an automatic movement that doesn’t require high-
level reasoning. The brain has learned a function that automatically produces the right
behavior in response to the situation. Sports games may be the most obvious candidate for
this in the near future.

Support
Neural networks and genetic algorithms can be very confusing topics for the begin-
ner. It is often helpful to discuss your thoughts with like-minded people. You can
post questions and discuss ideas using the messageboard at:

www.ai-junkie.com.

Any updates to the source code contained in this book may be found here:

www.ai-junkie.com/updates

Support
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An apprentice carpenter may want only a hammer and saw, but a master craftsman
employs many precision tools. Computer programming likewise requires sophisticated tools
to cope with the complexity of real applications, and only practice with these tools will
build skill in their use.

—Robert L. Kruse, Data Structures and Program Design

A nd so we come to the end of what I hope has been a stimulating and thought-
provoking journey. I hope you’ve had as much fun reading this book as I’ve

had writing it.

By now, you should know enough about neural networks and genetic algorithms to
start implementing them into your own projects… where appropriate. I’ve italicized
those last two words because I often see attempts to use neural networks as a pana-
cea for all a game’s AI needs. That is to say, some enthusiastic soul, all fired up with
the excitement of newfound knowledge, will try to use a neural network to control
the entire AI of a complex game agent. He will design a network with dozens of
inputs, loads of outputs, and expect the thing to perform like Arnold
Schwarzenegger on a good day! Unfortunately, miracles seldom happen, and these
same people are often found shaking their heads in disbelief when after ten million
generations, their bot still only spins in circles.

It’s best to think of genetic algorithms and neural networks as another tool in your
AI toolbox. As your experience and confidence with them grows, you will see more
areas in which one of them, or both, can be used to good effect. It may be a very
visible use, like the application of a feedforward network to control the car AIs in
Colin McRae Rally 2, or it may be a very subtle use, like the way single neurons are
used in Black & White to model the desires of the Creatures. You may also find uses
for them in the development phases of your game. There are now a number of
developers who use genetic algorithms to tweak the characteristics of their game’s
agents. I’ve even heard of developers letting loose neural-network controlled agents
in their game’s environment to test the physics engine. If there are any weak spots or
loopholes in your code, then a neural network driven by a genetic algorithm is a
great way of finding it.

Epilogue
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If you code something you feel proud of as a result of reading about the techniques
in this book, I’d love to hear from you. Seeing how different people go on to utilize
these techniques is a great reward for all the hours I’ve spent bashing away at this
keyboard. So don’t be shy, contact me at fup@ai-junkie.com.

And most of all… have fun!

Mat Buckland, July 2002

430 Epilogue
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A
acceleration, motion and, 206–208

acoustics, 202

activation function, 239

ACTIVE state, 315

active update mode, 405

AddLink function, 367

AddNeuron function, 367

adenine nucleotides, 91

AdjustSpeciesFitnesses, 394

advance() method, 148

Agogino, Adrian, 422

alien program example

AutoGun function, 336

brain, update and receiving instructions from,
333–335

CAlien class, 330–332

CAlien::Update function, 339

CController::Update function, 339–341

default project settings, 342

drift action, 332

m_SetAliens, 336

m_vecActiveAliens, 339

real-time evolution and, 328–329

thrust left action, 332

thrust right action, 332

thrust up action, 332

alleles, 91

AlreadyHaveThisNeuronID value, 377

Altered Carbon, 424

An Introduction to Genetic Algorithms, 420

An Introduction to Neural Networks, 420

AND function, 294

ANN (artificial neurons), 238, 240

anticlockwise direction, 185

Artificial Life, 422

Asher, Neil, 423

assign() method, 148

atoi function, 81

atomic particles, 202

AutoGun function, 336

axon, 235

B
back buffer, 60–62

backgrounds, color, 16–17

backpropagation, 244, 295, 297, 300

bDone function, 59

begin() method, 133

BeginPaint function, 29, 31, 38, 61, 67

behavior patterns, 178

Bezier curves, 36

bi-dimensional growth encoding, 356–357

bias value, 360

binary matrix encoding, 349–351

binary number system, 96–98

biological neurons, 236

Bishop, Christopher, 420
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BitBlt function, 64–67

bitmaps

described, 37

hdcOldBitmap function, 67

overview, 69

blitting, 37

boltzmann scaling, 170–171

books, as resource, 420–423

Boole, George, 295

Branke, Jurgen, 422

bRecurrent value, 400

Brewer, Gene, 424

brushes

creating, 47–48

overview, 37

by prefix, 13

C
c prefix, 13

C2DMatrix class, 193

CalculateBestPossibleRoute function, 123

CalculateBestWorstAvTot, 170

CalculateSplitPoints function, 270

CAlien::Update function, 339

CALLBACK function, 26

CAM (Cellular Automata Machine), 238

captions, creating, 72

cbSize, 15

cbWndExtra function, 16

cbXlsExtra, 16

CController class, 210–212

CController::Update function, 266–268, 339–341

CData class, 309

Cellular Automata Machine (CAM), 238

CgaTSP class, 127–129

CGenome structure, 362–364

CGenome::AddLink function, 368–373

CGenome::AddNeuron function, 373–380

CGenome::CreatePhenotype, 402–404

CGenome::GetCompatibilityScore, 387

CGun class, 186–187

CheckInnovation function, 371–372

ChooseSection function, 146

chromosomes, 90

Citeseer Scientific Literature Digital Library, 416

CLander class, 212–214

classification problems, 320

Clockwise Square gesture, 313

cloning, 91

CMapper class, 284

CmapTSP class, 122–123

CMinesweeper::TestSensors function, 286–287

CMinesweeper::Update function, 261–263

CNeuralNet class, 252–254, 400–401, 404–405

CNeuralNet::Update function, 254–256, 406–408

CNeural::Train function, 309–310

code

ACTIVE state, 315–317

alien example

alien brain, update and receiving instructions
from, 333–335

CAlien class, 330–332

CController class, 335–336

CController::Update function, 339–341

m_setAliens, 336

BitBlt function, 64–65

boltzmann scaling, 171

brushes, creating, 47

C2DMatrix class, 193

CalculateBestPossibleRoute function, 123

CalculateSplitPoints function, 270
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CController class, 263–265

CController::Update function, 266–268

CgaTSP class, 127–129

CGenome structure, 362–364

CGenome::AddLink function, 368–373

CGenome::AddNeuron function, 373–380

CGenome::CreatePhenotype, 402–404

CGenome::GetCompatibilityScore, 387–389

CmapTSP class, 122–123

CMinesweeper::TestSensors function, 286–287

CNeuralNet class, 252–253, 404–405

CNeuralNet::Update function, 255–256, 406–408

CreateWindow function, 18

CreateWindowEx function, 21

crossover operator, 381–386

dCollisionDist function, 278

dialog boxes, 77

DialogBox function, 78

DM (Displacement Mutation), 149–150

DrawText function, 55

Ellipse function, 50

Epoch() method, 138–139

ERROR_THRESHOLD, 310

Exchange Mutation operator, 134

FillRect function, 49

fitness function, 136–137

GetDC function, 38

GetTourLength function, 125

GetWindowText function, 81

GrabPermutation function, 126

Hello World! program, 7–9

IM (Insertion Mutation), 150–151

iTicksSpendHere, 284–285

IVM (Inversion Mutation), 151

LEARNING state, 315–317

Lunar Lander Project example

CController class, 210–212

CLander class, 212–214

Decode function, 227–228

LandedOK function, 219

UpdateShip function, 226

maze, path-finding scenario, 102–103

mouse data, recording and transforming,
311–312

MoveToEx function, 42

m_transSensors, 279

multi-crossover, 174

mutation operator, 223

m_vecCityCoOrds, 124

OBX (Order-Based Crossover), 152–154

PAINTSTRUCT, 29

Partially Matched Crossover, 131–133

PBX (Position Based Crossover), 156–158

PeekMessage function, 58–59

POINT structure, 24

PostMesage function, 82

Rectangle function, 48–49

ReleaseDC function, 39

SetTextColor function, 56

SGenome structure, 125–126

sigma scaling, 169–170

SInnovation structure, 366

SLinkGene structure, 358–360

SM (Scramble Mutation), 146–147

SNeuron structure, 249–250

SNeuronLayer structure, 251–252

SPoint function, 180

SSE (Sum of the Squared Errors), 304–306

SUS (Stochastic Universal Sampling), 162–164

TextOut function, 55

tournament selection, 164–165
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code (continued)

TRAINING state, 315–317

TransformSPoints function, 193

typedef function, 302–303

UM_SPAWN_NEW, 83

UNREADY state, 315–317

UpdateWindow function, 23

Windows procedure, 25–27

WM_COMMAND message, 74

WM_DESTROY message, 31

WM_PAINT message, 41–42

WNDCLASSEX, 15

Colin McRae Rally 2, 426

collisions

dCollisionDist function, 278

fitness function, 280–282

m_bCollided, 280, 289

m_dSpinBonus, 281

m_transSensors, 279

color

of backgrounds, 16–17

OPAQUE flag, 57

SetTextColor function, 56–57

TRANSPARENT, 57

COLORREF structure, 45

compatibility, testing, 387–389

compatibility distance, 386

competing conventions problem, 347–348

Cook, Richard, 144

CoOrd structure, 122

CParams::iNumGensAllowedNoImprovement, 394

crColor function, 45

CreateBrushIndirect function, 48

CreateCitiesCircular function, 123

CreateCompatibleBitmap function, 62

CreateCompatibleDC function, 62

CreateDIBPatternBrushPt function, 48

CreateHatchBrsuh function, 47

CreateNet function, 254

CreatePatternBrush function, 47

CreatePen function, 44–46

CreateSolidBrush function, 47

CreateStartPopulation() method, 109

CreateWindow function, 18–22

CreateWindowEX function, 21

Creation (Life and how to make it), 423

crossover

Alternating Position Crossover, 129

defined, 92

Edge Recombination Crossover, 129

Intersection Crossover, 129

Maximal Preservation Crossover, 129

multi-point, 173–175

operators, 223

Order Crossover, 129, 152–154

Partially Mapped Crossover, 129–133

Partially Matched Crossover, 131

Position Based Crossover, 129, 155–158

single-point, 172

Subtour Chunks Crossover, 129

two-point, 172–173

crossover rate, 99–101

CT_CENTER flag, 56

cTick, 225

CTimer class, 215

CTimer.cpp file, 84

CTimer.h file, 84

cursors

creating, 71

overview, 16, 69
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SetCursor function, 71

WM_SETCURSOR message, 71

curved lines, 36

curves, Bezier, 36

cxClient function, 41–42, 44

cyClient function, 41–42, 44

cytosine nucleotides, 91

D
d prefix, 13

Darwin amongst the Machines, 423

data sets, overfitting, 319–320

Dawkins, Richard, 421

dCollisionDist function, 278

d_dCollisionBonus, 281

d_dCrossoverRate, 114

Decode function, 227

decoding, 99

defines.h file, 112, 139

DefWindowProc function, 31

DeleteObject function, 46

dendrites, 235

device contexts, 37–39

dialog boxes

About dialog box example, 75–78

creating, 78–82

DialogBox function, 78

edit box identities, 79

EndDialog function, 78

GetDlgItem function, 80

GetWindowText function, 81

modal, 75

modeless, 75

overview, 69

properties, 76

static text buttons, 76

dialog templates, creating, 75

DiffX, 110

DiffY, 110

direct encoding

binary matrix encoding, 349–351

GENITOR techniques, 348–349

node-based encoding, 351–353

path-based encoding, 354

direction, magnitude and, 194

disjoint genes, 380

Displaced Inversion Mutation (DIVM), 151

Displacement Mutation (DM), 149–150

distance, calculating, 207

DIST_TOLERANCE function, 220

DIVM (Displaced Inversion Mutation), 151

DM (Displacement Mutation), 149–150

dMaxPerturbation, 258

dot product, 200–201

double buffering, 62

double function, 200

dProbabilityWeightReplaced parameter, 365

DrawText function, 55

drift action, 332

DT_BOTTOM flag, 56

DT_LEFT flag, 56

DT_RIGHT flag, 56

DT_SINGLELINE flag, 56

DT_TOP flag, 56

DT_WORDBREAK flag, 56

dw prefix, 13

dwExStyle function, 19
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dwRop flag, 67

dwStyle function, 20

dynamics, 202

Dyson, George, 423

E
EANN (Evolutionary Artificial Neural Network)

described, 346–347

direct encoding, 348–354

indirect encoding, 355–357

Edge Recombination Crossover, 129

elapsed time, 215

electricity and magnetism, 202

elements, 188

elitism, 137, 161

Ellipse function, 50

Emergence (from Chaos to Order), 423

encoding, 98, 104–106

direct

binary matrix encoding, 349–351

GENITOR techniques, 348–349

node-based encoding, 351–353

path-based, 354

indirect

bi-dimensional growth encoding, 356–357

grammar-based encoding, 355–356

overview, 355

neural networks, 256–257

end() method, 133

EndDialog function, 78

EndPaint function, 31, 39

Epoch() method, 109–110, 112

erase() method, 147

error value, 296

ERROR_THRESHOLD value, 310

event driven operating system, 22

evolution, real-time evolution, 328–329

Evolutionary Artificial Neural Network (EANN)

described, 346–347

direct encoding, 348–354

indirect encoding, 355–357

example code. See code

excess genes, 380

Exchange Mutation operator, 134

excitory influence, 239

exclamation-point icon, 11

explicit fitness sharing, 174–175, 390

F
fdwSound function, 28

feedforward network, 242

feeler readings, 287–288

fErase function, 30

filled areas, 37

FillRect function, 49

find() method, 133

fitness, 92

fitness function

adjusted scores, 136

collisions, 280–282

TSP tour lengths and scores, 135

fitness proportionate selection, 162–164

flickering screen problem, 60–62

floating point calculations, 140

fn prefix, 13

fnStyle flag, 47

force

gravity and, 208–210

overview, 204–205

fractions of a second, 203
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FrameRect function, 49

FRAMES_PER_SECOND flag, 84, 226

fSlice value, 113

G
g_ prefix, 13

Gates, Bill (Microsoft), 4–5

GDI (Graphics Device Interface), 36–37

generation process, 99

genes, 91

genetic algorithms

operator functions, 113–115

parameter values, 112

Genetic Algorithms in Search, Optimization and
Machine Learning, 420

GENITOR techniques, 348–349

genome, 91

GetAsyncKeyState function, 33–34

GetClientRect function, 41

GetDC function, 38–39, 62

GetDlgItem function, 80

GetKeyboardState function, 33

GetKeyState function, 33

GetMessage function, 24–25, 58

GetPixel function, 46

GetTimeElapsed function, 215

GetTourLength function, 125

GetWeights function, 253

GetWindowDOC function, 39

GetWindowText function, 81

Godel Escher Bach, An Eternal Golden Braid, 422

Goldberg, David E., 420

GrabPermutation function, 126

grammar-based encoding, 355–356

Grand, Steve, 423

graphics

bitmaps, 37

filled areas, 37

lines, shapes and curves, 36

text, 36

Graphics Device Interface (GDI), 36–37

gravity, 208–210

Gridlinked, 423

growth rules, 355

g_szApplicationName string, 19

g_szWindowClassName string, 19

guanine nucleotides, 91

Gurney, Kevin, 420

H
h prefix, 13

handle to a device context (HDC), 37, 39

hbr prefix, 16

hbrBackground function, 16–17

hcdBackBuffer function, 63, 66

hcdOldBitmap function, 67

hCursor function, 16

HDC (handle of a device text), 37–39

hdc prefix, 13, 30

Hebbs, Donald, 237

height, of windows, 20

Hello World! program, 7–9

hIconSm function, 17

hidden layers, adjusting weights for, 298

hidden value, 360

hInstance parameter, 9, 20

HIWORD macro, 43

Hofstadter, Douglas, 422

Holland, John, 112, 423

HPEN.SelectObject function, 45
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Hungarian Notation, 12–14

hwnd function, 26

hWnd parameter, 11

hwnd prefix, 13

hWndParent function, 20

I
i prefix, 13

iCmdShow function, 22

icons

creating, 70–71

overview, 69

as resources, 70–71

identify matrix, 190

IM (Insertion Mutation), 150–151

#include, 70

indirect encoding

bi-dimensional growth encoding, 356–357

grammar-based encoding, 355–356

overview, 355–357

information transference, 93

inhibitory influence, 239

innovation, 365

innovation numbers, 358

input value, 360

insert() method, 147

Insert resource options, 70

Insertion Mutation (IM), 150–151

instance handle, 9

Intersection Crossover, 129

iNumOnScreen, 339

iNumTicks, 257–258

InvalidateRect function, 59

Inversion Mutation (IVM), 151

iTicksSpentHere, 284

itos function, 80

IVM (Inversion Mutation), 151

J
Josuttis, Nicolai M., 421

K
K-PAX, I, II & III, 424

keyboard input, 32–34

kilogram, 204

kinematics, 202

Koehn, Philipp, 421

L
l prefix, 13

learning rate, 298

LEARNING state, 315

left curb, 322

left-hand side symbols (LHS), 355–356

Levy, Stephen, 422

LHS (left-hand side symbols), 355–356

linearly inseparable, 294

LineIntersection2D function, 279

lines, 36

lines, drawing, 36

LineTo function, 42–43

link genes, 358

listings. See code

LoadIcon function, 16

local minima, 137, 159

locus, 91

LOWORD macro, 43
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lp prefix, 13

lParam function, 21, 23, 26, 32

lpCaption parameter, 11

lpClassName function, 19

lpCmdLine parameter, 9

lpfnWndProc function, 16

lpPoint function, 42

lpRect function, 56

lpstr prefix, 13

lpszMenuName function, 17

lpText parameter, 11

lpWindowName function, 19

LRESULT, 26

Lunar Lander Project example

CController class, 210–212

CLander class, 212–214

Decode function, 227–228

fitness function, 224–225

LandedOK function, 219

UpdateShip function, 214–220, 225–228

M
m_ prefix, 13

m/s (meters per second), 205–206

macros

HIWORD, 43

LOWORD, 43

MAKEINTRESOURCE, 71

magnitude

of vectors, calculating, 197–198

vectors and, 194

Mahfoud, Samir W., 422

main() method, 9

MAKEINTRESOURCE macro, 71

mapping modes, 212

mass, 204

MATCH_TOLERANCE, 309

matrices

identity matrix, 190

multiplying, 189

overview, 188

transformation matrices, 188

transforming vertices using, 190–192

MAX_ACTION_DURATION, 221–223

Maximal Preservation Crossover, 129

maximizing windows, 9

MAX_MUTATION_DURATION, 223

MAX_NOISE_TO_LOAD, 320

maze

path-finding scenario, 101–104

Pathfinder program, 115

TestRoute() method, 104

MB_ABORT RETRYIGNORE flag, 11

m_bCollided, 280, 289

MB_ICONASTERISK flag, 11

MB_ICONQUESTION flag, 11

MB_ICONSTOP flag, 11

MB_ICONWARNING flag, 11

MB_OK flag, 11

MB_OKCANCEL flag, 11

MB_RETRYCANCEL flag, 11

MB_YESNO flag, 11

MB_YESNOCANCEL flag, 11

m_dMutationRate variable, 111, 115

m_dSigma, 170

m_dSpeed, 14

m_dSpinBonus, 281

mechanics, 202

memory device context, 62–64
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Menger, Karl, 131

menus

adding functionality to, 73–74

captions, creating, 72

creating, 72

naming, 17

overview, 69

message box uType styles, list of, 11

message queue, 22

messages boxes, 8

Metamagical Themas, 422

meter, 203–204

meters per second (m/s), 205–206

methods

advance(), 148

assign(), 148

begin(), 133

CreateStartPopulation(), 109

end(), 133

Epoch(), 109

erase(), 147

find(), 133

insert(), 147

main(), 9

PostQuitMessage(), 31, 33

push_back(), 106

sort(), 148

swap(), 133

TestRoute(), 104

m_iCloseMine, 260

Microsoft, Gates, Bill, 4–5

m_iDepth, 404

Miikkulainen, Risto, 421–422

minesweeper project example

CController class, 263–265

CController::Update function, 266–268

CMinesweeper class, 259–260

CMinesweeper::TestSensors function, 286–287

CMinesweeper::Update function, 261–263

dCollisionDist function, 278

inputs, selecting, 247–248

m_bCollided, 280, 289

m_transSensors, 279

outputs, selecting, 245–246

overview, 244–245

Mitchell, Melanie, 420

m_lTrack, 259, 262

m_NumCities function, 123

modal dialog boxes, 75

modeless dialog boxes, 75

momentum, adding, 317–319

Morgan, Richard, 424

motion

acceleration, 206–208

velocity, 205–206

mouse gesture

Clockwise Square gesture, 313

data, recording and transforming, 311–314

overview, 307

representing gesture with vectors, 308–309

MoveToEx function, 42

m_rTrack, 259, 262

m_Sensors, 279

m_SetAliens, 336

msg variable, 23

m_transSensors, 279

multi-crossover, 173–175

multiplication, 189, 198

mutation rate, 99, 101, 115, 223

m_vecActiveAliens, 339

m_vecCityCoOrds, 124

m_vecdSensors, 277
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m_vecFeelers, 285, 287

m_VecSplitPoints function, 271

N
n prefix, 13

naming menus, 17

nCmdShow function, 10

NEAT (Neuro Evolution of Augmenting
Topologies)

CGenome structure, 362–364

crossover operator, 381–386

described, 358

explicit fitness sharing, 390

operators and innovations, 365–367

SLinkGene structure, 358–360

SNeuronGene structure, 360–362

speciation, 386–387

Neural Computing, 420

neural networks

activation function, 239

activation value, 239

ANN (artificial neurons), 238

axon, 235

backpropagation, 244

CAM (Cellular Automata Machine), 238

dendrites, 235

encoding, 256–257

excitory influence, 239

feedforward network, 242

inhibitory influence, 239

minesweeper project example

CController class, 263–265

CController::Update function, 266–268

CMinesweeper class, 259–260

CMinesweeper::Update function, 261–263

hidden neurons, 248

inputs, selecting, 247–248

outputs, selecting, 245–246

overview, 244–245

overview, 234

soma, 235

supervised learning, 244

synaptic terminals, 235

training set, 244

unsupervised learning, 244

Neural Networks for Pattern Recognition, 420

Neuro Evolution of Augmenting Topologies
(NEAT)

CGenome structure, 362–364

crossover operator, 381–386

described, 358

explicit fitness sharing, 390

operators and innovations, 365–367

SLinkGene structure, 358–360

SNeuronGene structure, 360–362

speciation, 386–387

neuron genes, 358

neurons

artificial, 240

biological, 236

calculating activation of, 241

CNeuralNet class, 252–253

CNeuralNet::CreateNet function, 254

CNeuralNet::Update function, 254–256

comparison of, 235

defined, 235

hidden, 248

recurrent, 360

SNeuron structure, 249–251

SNeuronLayer structure, 251–252
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new_link value, 367

new_neuron value, 367

newsgroups, 417

nHeight function, 20

niching techniques, 174–176

node-based encoding, 351–353

Nolfi, Stefano, 422

none value, 360

normalized vectors, 198–199

nucleotides, 91

NULL value, 9, 11

NumTrysToAddLink function, 370–371

NumTrysToFindLoop function, 370

NUM_VERTS, 52

nWidth style, 20, 45

O
obstacle avoidance

dCollisionDist function, 278

d_dCollisionBonus, 281

environment, sensing, 277–280

LineIntersection2D, 279

m_bCollided, 280

m_dSpinBonus, 281

m_transSensors, 279

OBX (Order-Based Crossover), 152–154

OPAQUE flag, 57

optics, 202

Order-Based Crossover (OBX), 152–154

organisms, 92

output layers, adjusting weights for, 298

output value, 360

overfitting, 319–320

P
p prefix, 13

page flipping, 62

PageMaker, 4

PAINTSTRUCT, 29, 31

papers, as resources, 421–422

Parisi, Domenico, 422

Partially Mapped Crossover (PMX), 129–133

Partially Matched Crossover, 131–133

path-based encoding, 354

path-finding scenario, 101–104

Pathfinder program, 115

PBX (Position Base Crossover), 155–158

PeekMessage function, 58–59

Penrose, Roger, 423

pens

creating custom, 44–46

deleting, 46

Petzold, Charles, 421

phenotype, 91

PlaySound feature, 28

PM_NOREMOVE flag, 58

PM_REMOVE flag, 58

PMX (Partially Mapped Crossover), 129–133

POINT structure, 24, 311

Polygon function, 51–54

polygons, 36

Position Based Crossover, 129

Position Based Crossover (PBX), 155–158

PostMessage function, 82

PostQuitMessage() method, 31, 33

posX function, 183

posY function, 183

prefixes, Hungarian Notation, 13
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Programming Windows 5th Edition, 421

PS_DASH drawing style, 44

PS_DASHDOT drawing style, 44

PS_DASHDOTDOT drawing style, 44

PS_DOT drawing style, 44

PS_SOLID drawing style, 44

push_back() method, 106

PutWeight function, 253

Pythagoras’s equation, 123

Q
quantum phenomena, 202

question-mark icon, 11

R
radians, 184

RandInt function, 53

random strings, 104

rank scaling, 166

rcPaint function, 30

ReadyForNextFrame function, 85

real-time evolution, 328–329

recombination, 92

RECT structure, 30, 41

Rectangle function, 48–50

recurrent neuron, 360

red, green and blue (RGB), 60

refresh rate, 61

RegisterClass function, 17

registering windows, 15–18

ReleaseDC function, 39

reproduction, 94

resolving vectors, 199–200

resources

cursors, 71

dialog boxes, 75

icons as, creating, 70–71

menus, 72–73

newsgroups, 417

overview, 68

papers, 421–422

predefined, types of, 69

technical books, 420–421

Web resources, 416–417

RGB (red, green and blue), 60

RHS (right-hand side symbols), 355–356

right curb, 322

right-hand side symbols (RHS), 355–356

rotation, 184–186, 192

ROTATION_TOLERANCE function, 220

Roulette Wheel Selection, 99–100, 162

run_type, 404

S
sample code. See code

scalibility problem, 351

scaling, 183–184, 191–192

scaling techniques

boltzmann scaling, 170–171

overview, 165–166

rank scaling, 166

sigma scaling, 167–170

SCALING_FACTOR value, 217, 228

scan codes, 32

SCell structure, 284

Scramble Mutation (SM), 146–147

Searle, John R., 234
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selection techniques

elitism, 161

fitness proportionate selection, 162–164

overview, 160–161

Roulette Wheel Selection, 162

steady state selection, 161–162

Stochastic Universal Sampling, 162–164

tournament selection, 164–165

SelectObject function, 45, 62–63

SendMessage function, 82

SetCursor function, 71

SetMapMode, 212

SetPixel function, 46

SetTextColor function, 56–57

SetViewExtEx mode, 212

SetViewportOrgEx mode, 212

SetWindowExtEx mode, 212

SetWindowTest function, 80

SGenome structure, 125–126

shapes, 36

ellipses, 50

polygons, 51–54

rectangles, 48–50

ShowWindow function, 21

sigma scaling, 167–170

sigmoid, 246

Simmons, Dan, 424

Simonyi, Charles (Hungarian Notation), 12

single-point crossover, 172

SInnovation structure, 366

Sleep function, 60

SLink structure, 400–401

SLinkGene structure, 358–360

SM (Scramble Mutation), 146–147

snapshot function, 408

SND_ASYNC, 28

SND_FILENAME message, 28

SNeuron structure, 249–251

SNeuronGene structure, 360–362, 401–402

SNeuronLayer structure, 251–252

softmax activation function, 321

soma, 235

sort() method, 148

sound files

adding to menus, 74

functions for, 28

overview, 69

SpeciateAndCalculateSpawnLevels, 394

speciation, 386–387

SPEED_TOLERANCE function, 220

SplitX value, 361

SplitY value, 361

SPoint function, 180, 193, 195

SRCCOPY flag, 65, 67

SSE (Sum of the Squared Errors), 304

ssWindowClassName, 14

standard deviation, 167

standard template library (STL), 106

Stanley, Kenneth O., 421–422

Start function, 84

static text buttons, 76

std:multiset, 339

std::multiset container, 329

std::strings, 80

std::vector, 106, 114, 329

steady state selection, 161–162

step function, 239

STL (standard template library), 106

Stochastic Universal Sampling (SUS), 162–164

stop-sign icon, 11

str prefiz, 13

straight lines, 36
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Stroustrup, Bjarne, 421

Subtour Chunks Crossover, 129

subtracting vectors, 197

Sum of the Squared Errors (SSE), 304

supervised learning, 244, 322–323

support, 427

SUS (Stochastic Universal Sampling), 162–164

SVector2D structure, 200–201

swap() method, 133

SW_HIDE parameter, 10

SW_MINIMIZE parameter, 10

SW_RESTORE parameter, 10

SW_SHOW parameter, 10

SW_SHOWINNOACTIVE parameter, 10

SW_SHOWMAXIMIZED, 9

SW_SHOWMAXIMIZED parameter, 10

SW_SHOWMINIMIZED parameter, 10

SW_SHOWNO parameter, 10

SW_SHOWNOACTIVATE parameter, 10

SW_SHOWNORMAL parameter, 10

synaptic terminals, 235

sz prefix, 13

T
Taylor, Gordon Rattray, 420

terminal symbols, 355

TestForImpact function, 215, 218

testing compatibility, 387–389

TestRoute() method, 104

text

DrawText function, 55

SetTextColor function, 56–57

TextOut function, 55

TextOut function, 55

The Blind Watchmaker, 421

The C++ Programming Language, 421

The C++ Standard Library, 421

The Emperor’s New Mind, 423

The Hyperion Series of Books, 424

The Minds I, 422

The Natural History of the Mind, 420

The Skinner, 423

thermodynamics, 202

thrust left action, 332

thrust right action, 332

thrust up action, 332

thymine nucleotides, 91

time

CTimer class, 215

fractions of a second, 203

time elapsed, 215

time message, 23

timing

CTimer.cpp file, 84

CTimer.h file, 84

FRAMES_PER_SECOND flag, 84

overview, 83

ReadyForNextFrame function, 85

starting, 84

tournament selection, 164–165

track segment, 322

training set, 244

TRAINING state, 315

transformation matrices, 188

transformations

overview, 182

rotation, 184–186, 192

scaling, 183–184, 191–192

translation, 182–183, 191

World Transformation function, 186–187

TransformSPoints function, 193
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TranslateMessage function, 25

translations, 182–183, 191

TRANSPARENT flag, 57

Traveling Salesman Problem (TSP)

CalculateBestPossibleRoute function, 123

CgaTSP class, 127–129

CmapTSP class, 122

CreateCitiesCircular function, 123

GetTourLength function, 125

GrabPermutation function, 126

overview, 118–119

traps to avoid, 119–122

triple buffering, 61

TSP. See Traveling Salesman Problem

two-point crossover, 172–173

typedef function, 302

U
uFormat flag, 56

ui prefix, 13

uMsg function, 26

UM_SPAWN_NEW message, 82

unit vectors, 198

UNREADY state, 315

UnregisterClass function, 22

unsupervised learning, 244

Update function, 253, 335, 405

UpdateFitnessScores function, 109–110

UpdateShip function, 214–220, 225–228

UpdateWindow function, 22–23, 59

uType parameter, 11

V
validation set, 320

variance, 167

Vec2DSign function, 201

vecBits, 107

vectors

adding and subtracting, 195–197

defined, 194

dot product of, 200–201

gestures as, 308

magnitude of, calculating, 197–198

multiplying, 198

normalized, 198–199

resolving, 199–200

SVector2D utility, 201

unit, 198

velocity, motion and, 205–206

vertex

defined, 180

transforming, using matrices, 190–192

vertex buffers, 180

vertical refresh rate, 61

vertices, 51

verts function, 53

vertX fucntion, 183

vertY function, 183

virtual key codes, 32–34

VK_BACK key code, 33

VK_DELETE key code, 33

VK_DOWN key code, 33

VK_ESCAPE key code, 33

VK_HOME key code, 33

VK_INSERT key code, 33

VK_LEFT key code, 33

VK_NEXT key code, 33

VK_PRIOR key code, 33

VK_RETURN key code, 33
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VK_RIGHT key code, 33

VK_SNAPSHOT key code, 33

VK_SPACE key code, 33

VK_TAB key code, 33

VK_UP key code, 33

W
w prefix, 13

Web resources, 416–417

weights

for input layers, adjusting, 298

for output layers, adjusting, 298

What You See Is What You Get (WYSIWYG), 4

WHITE_BRUSH color, 55

WHITENESS flag, 66

WHITENESS value, 65

width, of windows, 20

Wilkes, Maurice, 328

Win32API functions, 9

WINDEF.H, 9

WINDOW_HEIGHT, 20

windows

activating and restoring, 10

creating, 18–22, 28

displaying as icon, 10

height, 20

hiding, 10

maximizing, 9

messages, 22–25

minimizing, 10

registering, 15–18

resizing, 24

styles, list of, 19–20

width, 20

Windows 1.0, 4

Windows 2.0, 5

Windows 3.0, 5

Windows 3.1, 5–6

Windows 95, 6

Windows 98, 7

Windows 2000, 7

Windows ME, 7

Windows Procedure, 16

Windows procedure, 25–27

Windows XP, 7

WINDOW_WIDTH, 20

WinMain function, 9

WM_ACTIVATE message, 24

WM_CHAR message, 25

WM_CLOSE message, 23

WM_COMMAND message, 73

WM_CREATE message, 23, 27–28, 53, 63

WM_DESTROY message, 27, 31, 67

WM_HSCROLL message, 24

WM_INITDIALOG message, 78

WM_KEYDOWN message, 24–25, 32

WM_KEYUP message, 23–25, 32, 54

WM_MOUSEMOVE message, 24

WM_PAINT message, 27, 29–31, 38, 41–42, 54,
61, 65

WM_QUIT message, 25, 31, 59

WM_SETCURSOR message, 71

WM_SIZE message, 24–25, 43, 67–68

WM_SYSKEYDOWN message, 32

WM_SYSKEYUP message, 25, 32

WM_VSCROLL message, 24

WNDCLASSEX structure, 15, 17

World Transformation function, 186–187

wParam function, 23, 26, 32
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wRemoveMsg function, 58

WS_BORDER style, 20

WS_CAPTION style, 20

WS_EX_ACCEPTFILES style, 19

WS_EX_APPWINDOW style, 19

WS_EX_CLIENTEDGE style, 19

WS_EX_CONTEXTHELP function, 19

WS_EX_DLGMODALFRAME style, 19

WS_EX_WINDOWEDGE style, 19

WS_HSCROLL style, 20

WS_MAXIMIZE style, 20

WS_OVERLAPPED style, 20, 44

WS_OVERLAPPEDWINDOW style, 20

WS_POPUP style, 20

WS_THICKFRAME style, 20, 44

WS_VSCROLL style, 20

WYSIWYG (What You See Is What You Get), 4

X
X-axis, 40

XOR function, 294–296

XOR network, after iteration of backprop, 299

XOR network, training, 299

Y
Y-axis, 40

Yao, Xin, 421
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